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Preface 
 

These volumes contain the papers presented at the Nineteenth International Conference 
on Processing and Fabrication of Advanced Materials (PFAM XIX) held in Auckland, 
New Zealand, during January 14-17, 2011. The Centre for Advanced Composite 
Materials housed within the Faculty of Engineering, at the University of Auckland 
(Auckland, New Zealand), was the principal organiser that put together this 
international conference spread over four days. It is the NINETEENTH in a series of 
conferences bringing together engineers, technologists, and researchers from industry, 
universities and research laboratories, working on various aspects related to the 
processing, fabrication, characterisation and evaluation of both advanced and emerging 
materials. The idea is to share and discuss their research findings, observations and 
inferences. The earlier conferences were held as follows:  
 
(1) The first was held in Cincinnati (USA) in 1991  
(2) The second was held in Chicago (USA) in 1992 
(3) The third was held in Pittsburgh (USA) in 1993  
(4) The fourth in Cleveland (USA) in 1995 
(5) The fifth in Cincinnati (USA) in 1996 
(6) The sixth in Singapore (Singapore) in 1997 
(7) The seventh was held in Rosemont, Illinois (USA) in 1998   
(8) The eighth was held in Singapore (Singapore) in 1999 
(9) The ninth was held in St. Louis, Missouri (USA) in 2000 
(10) The tenth was held in Indianapolis, Indiana (USA) in 2001 
(11) The eleventh was held in Columbus, Ohio (USA) in 2002 
(12) The twelfth was held at Pittsburgh, PA (USA) in 2003 
(13) The thirteenth was held in Singapore (Singapore) in 2004 
(14) The fourteenth was held in Pittsburgh, PA (USA) in 2005 
(15) The fifteenth was held in Cincinnati, OH (USA) in 2006 
(16) The sixteenth was held in Singapore (Singapore) in 2007 
(17) The seventeenth was held in New Delhi (India) in 2008. 
(18) The eighteenth was held in Sendai (Japan) in 2009. 
 
This conference is a collection of papers from over 30 countries.  Over 200 abstracts that 
include both invited and contributed papers, were received and reviewed for 
oral/poster presentations.  More than 100 manuscripts that were received in time were 
reviewed again for inclusion in both the bound and electronic volumes, the latter 
allowing us to include a few late submissions.  The papers cover a spectrum of topics 
that represent a truly diverse nature of the field of materials science and engineering and 
related manufacturing processes. On behalf of the Organising Committee, we extend our 
warmest thanks and appreciation to the authors of the manuscripts, session chairs and 
sponsors for their interest, enthusiasm and support.  Sincere thanks are also due to the 
technical editors, co-organisers and the members of the advisory committees, both local 
and international. 
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8.14 Modeling of solidification length in continuous cast hollow steel pipes
P. S. Robi, P. K. Jha and S. S. Chaudhury . . . . . . . . . . . . . . . . . . . . . . . 1219

8.15 Characterisation and Performance of Carbon based Hydrogen Diffusion
Anode for Molten Salt Electrowinning
S. Namboothiri, M. P. Taylor, J. J. J. Chen, M. M. Hyland and M. Cooksey . . . . . . . 1229

8.16 Curing Behavior of PF/PVAc Hybrid Adhesive and Its Interaction with
Wood
Yi Wang, Vikram Yadama, D. Bhattacharyya, Yang Cao and Marie-Pierre Laborie . . . 1247

8.17 Determination of diameter of sintered powder due to laser exposure in SLS
process by using finite element method
Ruchika Rai and P. M. Pandey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259

8.18 Temperature and Metallurgical Modelling for Optimisation of a Continu-
ous Annealing Furnace
N. Depree, J. J. J. Chen, M. P. Taylor, J. Sneyd, S. Taylor and S. Wang . . . . . . . . . 1271

xv



8.19 Development of PANI/Polysulfone nanocomposites: New generation mem-
brane materials
Javed Alam, Mohan Raja, Mansour Saleh Alhoshan and Abdul Wahab Mohammad . . . 1283

8.20 Modeling Strategies for Cost-Effective Manufacturing and Sustainable De-
sign of Composite Structures
Ramesh Talreja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293

8.21 RTM and CRTM Simulation for Complex Parts
W. A. Walbran, B. Verleye, S. Bickerton and P. A. Kelly . . . . . . . . . . . . . . . . 1302

8.22 Effect of seed layer thickness on the magnetic properties of Sputter de-
posited and magnetically annealed FM/AF system for exchange coupled
magnetic tunnel junctions
Himanshu Fulara, Sujeet Chaudhary, Subhash C. Kashyap and D. K. Pandya . . . . . 1314

8.23 Fabrication and Investigations of Patterned Ion-assist Ion-beam Sputtered
Co/MgO/CoFeB MTJs
M. Raju, Sujeet Chaudhary, Subhash C. Kashyap, D. K. Pandya and Vikas Rana . . . . 1320

8.24 The Effect of Ambient Temperature Variations on the Resin Infusion Process
C. M. D. Hickey and S. Bickerton . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328

8.25 Modelling the geometry of the repeat unit cell of five-axis weave architec-
tures
S. Buchanan, J. P. Quinn, A. T. McIlhagger, A. Grigorash and E. Archer . . . . . . . . 1342

8.26 Development of Novel Corrugated Plywood Sandwich Materials: Mechan-
ical Testing and Numerical Modelling
Stephen Kavermann, Mark Battley and D. Bhattacharyya . . . . . . . . . . . . . . . 1354

8.27 Processing and Modification of Cellulose Fibres for Application in Com-
posites
Robert Shanks, Matthew Leonard, Md.Ansari M. Nainar and Sirisart Ouajai . . . . . 1366

8.28 Influence of Pattern Forming on Macro-Micro-Structure of Solid Wood
Panels
Anjaneya Prasad Penneru, D. Bhattacharyya and Krishnan Jayaraman . . . . . . . . . 1378

8.29 Development of Cutting Tool Condition Monitoring System for Turning
Operations
H. Chelladurai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394

8.30 Molecular dynamics simulations of α-glycine crystal growth from solution
Daniel W. Cheong, Yi Di Boon and Ping Wu . . . . . . . . . . . . . . . . . . . . . 1406

9 Semiconductor Materials 1418
9.1 Rapid Synthesis of Ferromagnetic Semiconductor Nanowires by Single

Mode Microwave Processing
Charu Lata Dube, Subhash C. Kashyap and D. C. Dube . . . . . . . . . . . . . . . . 1419

9.2 Stress Distribution Measurement in GaN Semiconductor Wafer Using Laser
Photoelasticity
Kenji Gomi and Hiroshi Kusaga . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429

10 Surface Coatings 1439
10.1 Surface modification of zirconia (TZP) for enhancing osteogenesis of dental

and orthopedic implants
Masao Yoshinari, Akio Noro and Toshio Igarashi . . . . . . . . . . . . . . . . . . . . 1440

10.2 Reduction and Nitridation of Al2O3 Powder in Reactive Atmospheric
Plasma Spraying
Motohiro Yamada, Mohammed Shahien, Toshiaki Yasui and Masahiro Fukumoto . . . . 1452

10.3 Ti and TiO2 Coatings for Implants with Defined Roughness
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Abstract 

Understanding the structure-property relationship of polymers and polymer based 

(nano)composites is a key to design materials with desired properties. X-ray 

scattering is an effective method to investigate structural variations of polymers 

from molecular scale to micron-size domains. A variety of polymers including 

thermoplastics, thermoplastic polyurethane elastomers and polymer composites 

and nanocomposites have been subjected to uniaxial mechanical deformation, while 

the evolution of the nano-structure has been monitored by two-dimensional small 

angle X-ray scattering. Data evaluation methods and theories are discussed briefly. 

Aided by the image processing language PV-WAVE, hundreds of SAXS patterns are 

processed automatically to yield nano-structure parameters describing size and 

arrangements of crystallites and other kinds of domains. Nano-structure 

parameters are evaluated by the chord distribution function (CDF) method. For 

example, the nanoscopic strain is determined and compared to macroscopic strain. 

Finally, some mechanisms are proposed to describe structural evolutions of 

polymeric materials at the nano scale. 

Introduction 

Understanding structure-property relationship is vital to fabricating polymeric 

materials with tailored mechanical properties. Hence, it is important to follow 

transient microstructures while loading the material. To achieve this goal it is 

essential to apply characterization methods by which the variations of 

751



Processing and Fabrication of Advanced Materials XIX 

 

 

microstructure can be monitored during mechanical testing without disturbing it  

or affecting the mechanical properties. In other words, the characterization method  

must not cause any microstructural variations by itself and it must be executable 

without stopping the  loading.   

 

X-rays do not interact with polymers, thus they fulfill the above mentioned 

requirements. Therefore, time-resolved x-ray scattering experiments have been 

applied as effective direct methods to follow microstructural variations of polymeric 

materials under thermal and mechanical loads [1-3]. One challenge of this kind of 

experiments is, however, the huge number of grabbed patterns. Hence, fast 

automated computer programs are required to accelerate data evaluation and to 

reduce the ultimate analysis time.  

We apply small-angle x-ray scattering to monitor the transient structure of 

different classes of polymeric materials such as polymer based (nano)composites, 

thermoplastics, elastomers and polymer blends. In this paper, the experimental 

methods and the basic theories are discussed briefly and some recent data are 

presented.  

 

Experimental 

 

Materials 

Four types of materials have been used: 

Types I and II: Isotactic polypropylene Moplen HP400R (density 0.905 g/cm3, melt 

flow rate 25 g/10 min   (230 °C, 2.16 kg), tensile modulus 1.35 GPa) has been 

purchased from Basell Polyolefins (Basell, Switzerland). Polypropylene is mixed 

with multi-wall carbon nanotubes using an extruder and cut into granules (mixing 

process has been done by JC Christiansen et al., at Aalborg University, Denmark). 

The granules are then injected molded at 200 °C into a standard test bar (dog-bone, 

gauge area 2 mm × 1 mm) using a laboratory hot press. The pure PP and the 

nanocomposite samples are labeled as Moplen and Mopnan, respectively.   

Type III: A microfibrillar reinforced composite is made from 80 wt.-% high-density 

polyethylene (HDPE) and 20 wt.-% polyamide 6 (PA6). Details concerning the 

principle of the preparation [4], the design of the extruder line, and the making of 

the studied material have been published elsewhere [1].  

Type IX: Commercial grade polyurethane (soft segments: linear polycaprolactone 

diol, chain extender: HQEE and Hard segments:  MDI)  with shore A of 95 is used. 

The samples are injected molded at 205, 215 and 235 °C and labeled as TPU205, 
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TPU215 and TPU235, respectively. 

Mechanical tests 

Mechanical tests in the X-ray beam are performed by a self-made tensile machine. 

The machine performs symmetric drawing. Signals from load cell and transducer 

are recorded during the experiment. In tensile tests the sample is stretched 

continuously and in load cycling after approaching a pre-strain the samples are 

cycled between two fixed distances of the cross-heads. Thus, strain-controlled load-

cycling instead of stress controlled cycling is performed. During the tests a video 

camera monitors the sample and captures 2 pictures per cycle of the X-ray detector. 

Determination of the local macroscopic strain ε , is based on the recorded video 

frames. The method has recently been published [1].  

In-situe SAXS measurements 

SAXS is performed at the synchrotron beamline A2 at HASYLAB, Hamburg, 

Germany. The wavelength of the X-ray beam is 0.15 nm. Scattering patterns are 

collected by a 2D detector (marccd 165; mar research, Norderstedt, Germany) 

operated in 1024 × 1024 pixel mode (pixel size: 158.2 × 158.2 μm2). Thus, for the 

typical long period of 20 nm a variation of the peak position by one pixel causes a 

long-period variation of below 1%. 

Data evaluation 

The basic data evaluation steps are documented in a text book [5]. The scattering 

patterns I(s12 , s3), s=(s2
12 + s2

3)0.5, are normalized to the flux of the incident primary 

beam. Intensity loss due to absorption in the sample is compensated using the 

measured intensities of the primary beam before and after the sample, respectively. 

The machine background is subtracted, after which the  pixels in the shade of the 

beam stop and outside the bordering vacuum tube are marked invalid. The fiber 

pattern is centered and aligned. Part of the invalid regions can be filled from 

symmetry consideration. The remnant central blind hole is filled applying a stiff 

parabolic extrapolation [6]. The pattern is projected on the representative fiber 

plane. Multiplication by s2 applies the real-space Laplacian. The density 

fluctuation background is determined by low-pass filtering. It is eliminated by 

subtraction. The resulting interference function, G(s12 ,s3) describes the ideal 

multiphase system. Its 2D Fourier transform is the chord distribution function 

(CDF), z(r12 , r3). From G(s12 ,s3) the scattering intensity Iid(s12 ,s3) of the ideal 

multiphase system can be reconstructed. From this pattern the scattering power 
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 Q = ∫∫∫Iid (s)d 3s (1) 

is computed. Q is already normalized with respect the to the irradiated volume, 

because of the respective normalization of the measured intensity. For this 

normalization we have taken advantage of the fact that the cross-section of the 

primary beam is oblong with its long axis (3 mm) perpendicular to the fiber. Thus, 

the taut fiber sample is totally immersed in the primary beam. Now assuming 

incompressibility, a quantity that is proportional to the irradiated volume can be 

estimated from the initial diameter of the fiber and the actual macroscopic strain 

ε(t), where t is the time elapsed during the experiment. Because the major fraction 

of the studied materials is made from semicrystalline polyethylene, a major 

contribution [1,5,7] to the invariant  

 

 Q = υ (1 – υ)( ρc – ρa)2 + X (2) 

 

originates from the two-phase structure of the polyethylene with v being its volume 

crystallinity, and ρc - ρa the contrast between the crystalline and the amorphous 

electron density. The unknown quantity X is predominantly originating from the 

embedded reinforcing needle-shaped domains (PA6), and from voids. In addition, 

the nanoscopic strain εnano, is estimated from the variation of the long period peaks 

in CDF. 

 

Results  and discussion 

 

In the following sections the results regarding four different types of materials will 

be presented. 

PP and PP/MWCNT nanocomposite: SAXS patterns and the corresponding CDFs of 

Moplen and Mopnan samples at different stages  of load cycling are presented in 

Figs. 1 and 2, respectively. The strong meridional drop-shaped peaks indicate that 

both samples are highly oriented in their initial state [8,9]. As the sample is 

deformed the meridional peaks become weaker in intensity and move closer to the 

center. In both cases the meridional peak consist of a strong drop-shaped peak 

imposed on a broader and weaker elliptical peak. The drop-shaped peak is 

attributed to an oriented lamellar-stack structure with its axis parallel to the axis 

of the tensile bar. The weak elliptical peak observed in the original material can be 

explained by an ensemble of lamellar stacks with random orientation, in which the 

long period is a function of the stack's inclination with respect to the axis of the 
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injection-molded tensile bar. Notably, the long period in transverse direction is 

longer than that in longitudinal direction. 

                            (a)              (b)                 (c)                  (d) 

Figure 1: SAXS patterns (1st row) and CDF (2nd row) of Moplen sample at 

different stages of load cycling: a) ε = 0, b) first maximum ε, c) first minimum  ε 

and d) end of cycling 

   

                            (a)              (b)                 (c)                  (d) 

Figure 2: SAXS patterns (1st row) and CDF (2nd row) of Mopnan sample at different 

stages of load cycling: a) ε = 0, b) first maximum ε, c) first minimum  ε and d) end 

of cycling 
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(a) 

(b) 

Figure 3: variation of macro and nano parameters during load cycling, a) Moplen & 

b) Mopnan 

For both materials the elliptical peaks weaken in intensity considerably as the 

mechanical load is applied. As the Moplen is deformed, the drop-shape peaks move 

toward the center and turn into a meridional streak. In the case of the Mopnan 

sample the drop-shape two-point pattern exhibits clear maxima even at the end of 

the experiment. Thus, for the pure PP the application of mechanical strain causes 

considerable spreading of the long-period distribution (peak into streak), whereas 

the blending with CNT appears to considerably decrease this dispersion of long 

periods (peak remains peak). 

In order to obtain more information about the microstructural variations, the 

nanoscopic strain εnano, is calculated based on the variation of the number-average 

long period, as determined from the CDFs. Strain, nanoscopic strain, and stress 

during load cycling are presented in Figs. 3a and 3b for Moplen and Mopnan 

samples, respectively. Both samples show little macroscopic fatigue which is 

inferred from the mild decrease in the stress level from cycle to cycle. The 
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nanoscopic strain is smaller than the macroscopic strain in both cases. The 

nanoscopic fatigue is readily assessed from the decrement of successive maxima in 

εnano(t). Obviously, the blending with CNT effectively decreases the nanoscopic 

fatigue of the material. 

In order to explain this finding we speculate that the stress is effectively 

transferred from the polypropylene matrix to the nanotubes, and a reinforced semi-

crystalline layer system experiences a lower stress in comparison with the semi-

crystalline system of the pure polypropylene. Hence, the carbon nanotubes stabilize 

the nano-structure of polypropylene and improve fatigue properties of this 

material.  

Microfibrillar reinforced composites: SAXS patterns and corresponding CDFs of the 

MFC sample at different steps of deformation are shown in Fig. 4. In order to have 

more information about the variation of nano-structure, the nanoscopic strain εnano, 

is extracted from peak positions on the meridian. Stress, strain, nanoscopic strain, 

and scattering power of the chosen sample cycled about low pre-strain (2%) and 

high pre-strain (6%) are shown in Figs. 5 and 6, respectively.  In the case of low 

pre-strain the material shows weak fatigue only, whereas the same material 

subjected to a higher pre-strain shows very strong fatigue which can be easily 

inferred from the decrease of the stress σ, from cycle to cycle. In Fig. 4, the 

macroscopic strain ε, becomes negative after ca. 40 min. This observation may be 

explained by viscous flow of the material. During the further course of the 

experiment (t > 80 min) this fatigue flow even causes the sample to become slack. 

It bends in each cycle close to the lower dead centers. As a result, the apparent ε 

drops considerably. 

 

No significant phase shift is observed between εnano, σ, and ε both for low pre-strain 

and for high pre-strain. Thus, these quantities predominantly reflect the forced 

oscillation of the cross-heads. On the other hand, for both pre-strains at small 

deformations, εnano and ε are comparable, but at higher deformations  εnano is 

remarkably smaller than ε.  
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Figure 4. Selected SAXS patterns I(s12, s3) and CDFs |z(r12, r3)| from the 

experiment in which the load cycling has been performed on high pre-strain (“high-

cycling experiment”). Intensities are on logarithmic scale. Displayed regions: 

−0.1nm−1 < s12, s3 < 0.1nm−1, −75 nm < r12, r3 < 75 nm 

 

Compared to other parameters the evolution of the scattering power, Q, appears to 

be different. At the beginning of both experiments the scattering power is 

increasing. Eq. (2) shows that it is impossible to assign the reason for the increase 

of the integral quantity Q to one of the structural parameters in the equation, 

unless one takes advantage of the anisotropy of the scattering patterns. Based on 

the integral quantity alone, it would not even be possible to decide if an increase or 

a decrease of crystallinity or contrast are the reason for a specific change of Q. 

 

Nevertheless, even from a first visit to the data some heuristic assessments can be 

made. When in the low-cycling experiment (Fig. 5) the first top dead-center is 

reached (t = 4min) ,  Q(t)  has just passed a maximum. In the high-cycling 

experiment (Fig. 6) the first top dead-center is much later – at higher strain ε and 

at higher stress σ . At this time, Q(t) has already dropped considerably below the 

initial scattering power. In the following cycles an almost negligible Q-oscillation is 

considerably amplified by the external load, until its amplitude appears saturated 

from the 10th cycle. This is completely different in the low-cycling experiment (Fig. 

5), where the amplitude of the Q-oscillation is high and constant from the first 

cycle to the last. Comparison of these observations indicates that the initial 

increase of Q is related to a fortification of the nanostructure, similar to the strain-

induced crystallization that has been detected in an earlier study of hard-elastic 
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polypropylene [10], whereas the subsequent drop of Q appears to be indicative for 

structural deterioration. In a recent study [4] on continuous straining of the 

microfibrillar reinforced HDPE/PA-blends we have already carried out a detailed 

analysis of the anisotropic scattering patterns and have reported that the initial 

nanostructure of the polyethylene in the HDPE/PA-blends is rather heterogeneous. 

There fortification at low strain is accomplished by a mechanism, in which the 

crystalline domains become wedged. At higher strain this wedged structure is 

broken, crystallites are destroyed, and the lateral correlation among the domains is 

lost. Now in the high pre-strain load-cycling experiment the evolution of Q(t) 

indicates some structural adaption process. The last part of the initial increasing 

load ramp appears to deteriorate the original nanostructure. Then the cycling 

appears to “teach” the material an adapted nanostructure that, again, responds 

“elastically” on the forced external load cycles. 

   

Figure 5. Macro/nanoscopic parameters of HDPE/PA6 (80/20) cycled about low pre-

strain 
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Figure 6. Macro/nanoscopic parameters of HDPE/PA6 (80/20) cycled about high pre-

strain 

Thermoplastic polyurethane elastomers: SAXS patterns and corresponding CDFs 

of different TPU samples are presented in Figs. 7-9.  All samples are oriented in 

their initial state. This orientation is caused during injection molding process. 

However, the meridional peaks are weaker and broader for undeformed TPU235 in 

comparison with the samples molded at lower temperature. The lower intensity of 

the peaks is due to less developed phase separation and is in line with the 

mechanical data. The lower  orientation of TPU235 can also be due to lower melt 

viscosity at higher temperature. As the samples are deformed, the meridional 

peaks become weaker and also an equatorial streak develops. The decrease of peak 

intensity indicates deterioration of hard segment domains. The development of the 

equatorial streak can be due to fibrillation of soft segment phase or growth of 

microvoids and crazes.  

                                    (a)                (b)                (c)  

Figure 7. SAXS patterns (1st row) and corresponding CDFs (2nd row) of TPU205 

sample: (a) initial state, (b) half maximum strain (c) maximum strain 
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                                        (a)                (b)                (c)  

Figure 8. SAXS patterns (1st row) and corresponding CDFs (2nd row) of TPU215 

sample: (a) initial state, (b) half maximum strain (c) maximum strain 

                                        (a)                (b)                (c)  

Figure 9. SAXS patterns (1st row) and corresponding CDFs (2nd row) of TPU235 

sample: (a) initial state, (b) half maximum strain (c) maximum strain 
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Figure 10. Macroscopic and nanoscopic strain of different TPU samples 

 

  In order to obtain more information about the nanoscopic variations, long periods 

of structural moieties are extracted from peak positions in CDFs. It is seen that the 

nanoscopic strain is quite smaller than the macroscopic strain, Fig. 10.     

  

Discussion:   

 

We have observed that the nanoscopic strain is smaller than macroscopic strain for 

all the studied samples. To explain this observation we propose the following 

mechanism which is depicted in Fig. 11. In a semicrystalline polymer two different 

amorphous regions can be distinguished; i) a sandwiched amorphous phase which 

consists of  amorphous chain segments between lamellae and ii) free amorphous 

regions which are far away from crystallites. When a semicrystalline polymer is 

stressed, crystallites resist deformation due to their higher modulus in comparison 

with the surrounding amorphous phase, thus, the deformation mainly takes place 

in the amorphous regions. At small macroscopic strains the sandwiched and the 

free amorphous regions are deformed almost to the same extent, while at higher 

deformations the sandwiched domains resist further deformation due to the effect 

of tie molecules which are stretched to the highest possible extent. Thus, the 

deformation predominantly occurs in the free amorphous region. Keeping in mind 

that εnano is determined from the long period between lamellae, it increases to the 

same extent of ε at small deformations (affine deformation), while its variation rate 
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slows down at large deformations (non-affine deformation). 

  

Figure 11. Schematic presentation of deformation mechanism in a semicrystalline 

polymer 

Conclusions 

 

Four different types of samples have been tested to cover a wide range of polymeric 

materials and to draw some conclusions about the behavior and transient 

structures of semi-crystalline polymers under tensile load. The macroscopic strain 

is obtained from the video frames and simultaneously the variations of 

microstructure is recorded by SAXS patterns. The CDF is computed and from the 

variations of long period peak on the CDFs the nanoscopic strain is estimated. For 

all of the studied materials the nanoscopic strain is smaller than the macroscopic 

strain, except for very small deformations. This is attributed to the resistance of 

taut tie molecules against deformation and heterogeneous deformation of the 

material at the nano-scale. Further studies on other types of materials and other 

mechanical properties (eg. Creep resistance) are in progress.  
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