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Determination of the Interface Distribution Function of Lamellar Two-Phase Systems 
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The concept of interface distribution functions [Ruland (1977), Colloid Polym. Sci. 255, 417-427] has been applied to the 
evaluation of the small-angle scattering of a series of polyethylene samples. The results indicate that the statistics of the 
lamellar stacking is not necessarily determined by next-neighbor interactions and that non-negligible volume fractions 
of amorphous domains outside the lamellar systems are observed in a number of samples. 

1. Introduction 

Lamellar two-phase superstructures occur very frequently 
in polymers, and X-ray small-angle scattering is widely used 
for the study of these structures. In many cases the evaluation 
of the scattering curves has been restricted to the determina- 
tion of the Bragg spacing from the interference maxima, 
which is a measure of the average repeat distance of the 
lamellar stacking called 'long period'. More involved meth- 
ods (Tsvankin, Zubov & Kitaigorodskii, 1968; Strobl & 
Miiller, 1973; Br/imer, 1974; Kilian & Wenig, 1974) use 
further details of the scattering curve (e.g. line width, in- 
tensity distribution) to obtain supplementary information. 

Most of these methods are based on structural models 
with a limited number of parameters; hence the significance 
of the results depends strongly on the applicability of these 
models. 

The fewest a priori assumptions are made in the determina- 
tion of the one-dimensional correlation function (Vonk & 
Kortleve, 1967). This correlation function is, however, re- 
latively insensitive to structural details. It was shown in a 
recent paper (Ruland, 1977) that more structural details 
can be resolved in the interface distribution function which 
is obtained by Fourier transformation of suitably corrected 
experimental intensity curves. 

In the present paper, this method has been applied to 
small-angle scattering curves of polyethylene samples of 
various crystallinities in order to check its applicability and 
limits. 

2. Theoretical 

A detailed discussion of the theoretical basis for the deter- 
mination of interface distribution functions is given in the 

earlier paper (Ruland, 1977). For the purpose of this paper 
it is thus sufficient to present a summary of the basic equa- 
tions. 

Let us first consider scattering curves measured with pin- 
hole collimation. The scattering intensity lob s is determined 
over a wide enough range so that the intensity component 
lw due to density fluctuations within the phases can be 
determined by extrapolation from the wide-angle region 
where lv~ is predominant. This extrapolation can be facili- 
tated by log I vs s 2 plots (Rathje & Ruland, 1976). The dif- 
ference lob s --Ivl is then multiplied by s 4, where s = 2 sin 0/2 
is the distance in reciprocal space, and plotted against s 2 
in order to determine the width of the domain boundary 
dz. Knowing dz one can correct the scattering intensity for 
the finite width of the domain boundary. The result is lid, 
the scattering intensity of a lamellar two-phase system with 
infinitely sharp domain boundaries. This intensity distribu- 
tion should follow Porod's law for large values of s. From 
the difference between l~d and its asymptote at large values 
of s one obtains the interference function G~{s) 

1 GI(s)= 87~3 [lim s4lid--S4lid] (1) 

where t is the thickness of and V the volume occupied by 
the stacks of lamellae. 

The interface distribution function gl{r) is then obtained 
by a Fourier cosine transform of Gl(s): 

gx(r)= 2 Gl(s) cos 2nrsds. (2) 
o 

In the case of scattering curves measured with slit collima- 
tion, the procedure for correcting the observed intensity 
Jobs is similar to that for lob s. From the difference Jobs--JFl 
multiplied by s 3 one determines dz and thus Jid- From this 
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the interference function Gl(s) is obtained as 

1 i~l(s) = 16n 2 t ----~- [}im S3Jid(S)--S3Jid ] . (3) 

In contrast to equation (2), the relationship between ~l(s) 
and g~(r) is given by a more complicated integral transform 
with Bessel functions of orders zero to three as kernel, 

gl(r) = CJl(s)K(rs)ds, (4) 
0 

where 

n (3[Jo(2nrs) - J2(2nrs)] K(rs) = ~ 

+ nrs[J 3(2nrs) -- J l(2nrs)]). 

The angular region in J in which Porod's law is valid may 
be outside the validity of the approximation of 'infinite' slit 
height. In this case, the determination of d= and J~d can be 
carried out by a method described in an earlier paper (Ru- 
land, 1974) in which the profile of the slit is approximated by 
a trapezoid. 

In order to study the effect of the statistics of the lamellar 
stacking and the stack size on the interface distribution 
functions we have computed g~(r) functions for various types 
of stacking models assuming Gaussian distributions to re- 
present the variation of interface distances. In this case, 
gl(r) is given by 

gl(r) = ~ wih i ( r - r i ) ,  (5) 
i = 1  

where w~ are the weights of the Gaussian distance distribu- 
tions h~ which are centered on r~. If we consider normalized 
distributions, 

f ~ hi(r)dr= l 
- o o  

h~ is given by 

1 h= exp( ) 
where a~ is the r.m.s, variation of the ith distance distribu- 
tion. For the types of stacking distributions we are interested 
in, the most convenient indexing is i=  1 for the spacings 
between adjacent interfaces corresponding to the thicknesses 
of the lamellae of the phase with the lower volume concentra- 
tion, i=  2 for the spacings between adjacent interfaces cor- 
responding to the thicknesses of the lamellae of the phase 
with the higher volume concentration, i = 3 for the distances 
to the second next interface, i=  4 for the distance to the third 
next interface containing the thicknesses of two lamellae of 
the phase with the lower volume concentration and one 
lamella of the phase of higher volume concentration, etc. 
The correspondence to the more general notation used in 
the earlier paper (Ruland, 1977) is given in Table 1. 

Table 1. Correspondence of  general and simplified index for  
distance distributions 

General Simplified 
I 1 
2 2 

12,21 3 
121 4 
212 5 

1212,2121 6 
12121 7 
21212 8 

The conversion is thus 

i = n l  +2n2, 

where nl and n2 are the multiplicities with which the indices 
1 and 2, respectively, occur in the general index. With this 
notation, the ri values are given by 

r i=n ( r l+ r2 )  for i=3n ,  

r ; = n ( r ~ + r 2 ) + r l  for i = 3 n + l ,  

r i ~-- nfr 1 + 1"2) --I- r 2 for i = 3n + 2. 

For an infinite stack size, the weight functions are 

wi= 1 for i-#3n, 

w i = - 2  for i=3n  

and a first approximation for finite stack sizes is given by 
wi = exp ( - rJt) for i :# 3n, 

w i = - 2 e x p ( - r i / t )  for i = 3 n ,  

where t is the average thickness of the stack of lamellae. 
Fig. 1 shows a theoretical g~(r) function for distance statis- 

tics resulting from independent variations aa and a2 of the 
thickness d~ and d2 of the lamellae of phases 1 and 2, respec- 
tively, within a given stack. The solid line is computed for 
infinite stack size, the broken line for an average of six 
lamellae of each kind per stack. 
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o 150 2bo 3bo ~ 
Fig. 1. Theoretical interface d is t r ibut ion gl{r)  for a stacking statistics. 

rc =0-75, L =  100 A, a, = a,.= 5 ~, solid line t =  ~ .  broken line t =  
600 A. 

g Jr) 

r 

0 100 2W 3[90 ,~ 
Fig. 2. Theoretical interface d is t r ibut ion gl(r)  for a lattice statistics. 

rc=0"75. L=100 A, a~=aL=5 ~, solid line t=~c, broken line 
t = 600 A. 
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In this case, the change of 0-i with i is given by the rela- 
tionships 

0-2=n(0-2 +0-2) for i=  3n, 

0-2=n(0-12+0"2)+0 -2 for i = 3 n + l ,  

0-2=n(0-z+0-z)+a2 for i = 3 n + 2 .  

Fig. 2 shows a theoretical ga(r) function for distance statistics 
resulting from an independent variation of the thickness d~ 
and the spacing L between the centers of the lamellae of the 
same phase within a given stack, for finite and infinite stack 
size. In this case, the change of 0-i with i is given by the rela- 
tionship 

a~=n(0-2 /2+a  2) for i=3n  and i=3n__+l. 

Fig. 3 shows a theoretical gl(r) function for distance sta- 
tistics resulting from a variation of the parameters of the 
lamellar structure from one stack to another, assuming the 
structure within each individual stack to be perfectly periodic 
and containing the same volume fractions of the two phases. 
In this case the distance distributions hi expand linearly with 
ri so that the ratio 0-i/ri is constant. 

An inspection of these three figures reveals that the gl(r) 
functions are, apparently, rather insensitive to changes of the 
stack size. This is due to the fact that the stack size has only 
little effect on gAr) at relatively small values of r, and that the 
values of g l(r) at larger r values, where the effect of finite stack 
size would be more pronounced, are heavily affected by the 
overlap of adjacent distance distributions with opposite sign. 

g, (r ] 

t60 200 ~ r 

Fig. 3. Theoretical interface distribution gl{r) for a homogenous L 
distribution, vc =(~75, L = 100 A, aa=5 A, solid line t = oo, broken 
line t= 600/k. 

This observation suggests that the information obtainable 
on the stack size depends strongly on the type of the distance 
statistics present, and that the values for the stack size de- 
termined by a fitting of theoretical scattering curves to ex- 
perimental ones may be affected by large errors if the ap- 
proximation chosen for the distance statistics is not correct. 

3. Experimental 

Five samples of commercial polyethylene were chosen for 
the experiments: 

1. Lupolen 1800 H (BASF), a branched polyethylene with 
a crystallinity of 39% (36 branches per 1000 monomer 
units). 

2. Lupolen 4261 Z (BASF,), a linear polyethylene with a 
crystallinity of 58~o. 

3. Lupolen 5041 D (BASF'), a branched polyethylene with 
a crystallinity of 65% (9 branches per 1000 monomer 
units). 

4. Lupolen 6041 D (BASF), a linear polyethylene with a 
crystallinity of 74%. 

5. The same starting material as sample 4 with a crystal- 
linity of 83% obtained by annealing at 135~'C for one 
week. 

The crystallinity of these samples was determined by X-ray 
wide-angle scattering, calorimetry and density methods. 
The results of these methods differ only by a few percent. 
The small-angle scattering was measured with a Kratky 
camera using Cu K0~ radiation, a graphite monochromator,  a 
Xenon-filled proportional counter and pulse-height discri- 
mination. 

In order to obtain a high accuracy, especially at larger 
s values, the scattering curves were measured with different 
vertical slit dimensions in three overlapping angular regions. 
After correcting.for the finite vertical slit dimensions using a 
modified version of Vonk's (1971) program, these curves 
were fitted together. Fig. 4 shows a log J vs s 2 plot of such a 
curve in which the fluctuation component Jv~ is determined 
by an extrapolation from larger s values. The function 
S3(J--JFO is then plotted against s z in order to detect the 
region in which Porod's law is valid. Fig. 5 shows such a 
plot from which Ip, the Porod parameter (as defined by 
Ruland, 1977), and dz, the average thickness of the domain 
boundary, are obtained. If dz is known, the scattering curve 
can be corrected for the finite width of the domain boundary, 
which results in the determination of Jid- From the latter 
the correct value for Porod's invariant k (for the determina- 

5.0]1 

4.0 

3 . 0 _ _  - -  
I 

s ? 

0 3 6 9 x 10 3 A -  2 

Fig. 4. Determination of the fluctuation component by a log Js 2 plot 
(sample 2). 
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28.0. 
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0 0.6 1.2 ! . 8 ×  ] 0 - 3  A - 2  

Fig. 5. Determination of the thickness of the domain boundary 
(sample 2). 
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tion of lp) can be obtained with the expression 
sMax 2n 

k = 2n sJid(s)ds + [ lim S3Jid(S)], 
,dO SMa x s--* zc 

in which the second term on the right-hand side represents 
an estimate of the integral within the limits SMax to infinity. 
With equation (3) the interference function i~t(s) is obtained 
from Jid and its Fourier Bessel transform defined by equa- 
tion (4) results in the determination of the interface distribu- 
tion function g~(r). Fig. 6 shows an example of Gl(s) and 
Fig. 7 the corresponding gl(r). 

In order to check the direct computation of g~(r) from 
G~(s), we have carried out a complete desmearing of the ex- 
perimental scattering curve using the computer program of 
Vonk (1971). Fig. 8 shows the interference function Gl(S), 
as defined by equation (1), corresponding to the G~(s) func- 
tion shown in Fig. 6, and Fig. 9 shows g~(r) obtained from 
Gl(S) by Fourier cosine transform. A comparison of these 
curves reveals that both ways of computing gAr) lead to 
essentially the same result, but the direct computation from 
G~(r) is, of course, preferable since it minimizes computation 
time and errors. 

The curves shown in Figs. 7 and 9 correspond to earlier 
measurements of sample 2 and are given only to demon- 
strate the equivalence of the two ways of computation. For 
the final evaluation of g~(r), an improved measurement of 
Gl(s) has been used and the values given in Table 2 for sample 
2 do thus not correspond to the evaluation of Fig. 7 or Fig. 9. 

4.  R e s u l t s  a n d  d i s c u s s i o n  

The structural parameters obtained from the evaluation of 

Jobs(S) and gl(r) are in Table 2. The evaluation of gdr) was 
carried out with a DuPont  curve analyzer. 

Table 2. Structural parameters obtained fi'om the evaluation 
of Jobs and gl 

d_ I r 3a a. ac L 
Sample 1~) (A) (A) (A) (A) CA) 

1 I I  48 40 18 50 90 
2 9 76 32 15 148 180 
3 10 68 30 13 143 173 
4 8 82 38 18 239 277 
5 < 3 93 40 19 308 348 

The thickness of domain boundary d- is about 10 A for all 
samples except the highly annealed one with a tendency of 
the branched polyethylene to have somewhat higher values 
than the linear ones. The latter effect has already been ob- 
served by Vonk (1973). The average thickness of the amor- 
phous lamellae and its r.m.s, variation are about the same for 
all samples; the differences in the long period L are mainly 
due to the differences in the average thickness dc of the crys- 
talline lamellae. The r.m.s, variation of L and dc cannot be de- 
termined unambiguously, since the corresponding distribu- 
tions show in all cases a strong overlap. In the case of samples 
3, 4 and 5, there are indications of a bimodal distribution of 
dc and L which could be attributed to the formation of super- 
structures with different L values at different stages of the 
crystallization process. Interface distances of higher order 
cannot be resolved with sufficient accuracy to derive quanti- 
tative information of the type of stacking statistics, as dis- 
cussed in the theoretical section. However, the general aspect 
of the gl(r) functions obtained resembles strongly that of the 

(~s) 2.03"0~" 

1.0 

o ° 

-- l. 

o 0.9 1.8 -- 2.7 x l0 -2 

Fig. 6. The interference function G ~(s) obtained from the slit-smeared 
scattering curve of sample 2. 

GII5 ) .'.11 - 

2.0 ] " 

0 0.9 1.8 2.7x 10-2/~ -~ 

Fig. 8. The interference function G~(s) obtained from the desmeared 
scattering curve of sample 2. 
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Fig. 7. The interface distribution function g~(r) obtained from ~(s) 

(sample 2) by Fourier-Bessel transformation. 
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Fig. 9. The interface distribution function g~(r) obtained from G~(s) 
(sample 2) by Fourier cosine transformation. 
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gl(r) functions calculated for homogeneous L distributions 
(see Figs. 3, 7 and 9), the other types of stacking statistics 
could only be fitted to the observed gl(r) curves if unreason- 
ably small stack sizes (average numbers of layers per stack 
smaller than two) were considered. 

It can be expected that the information obtainable from 
interface distribution functions is limited to smaller dis- 
tances in a similar way and for similar reasons, as radial 
atomic distributions functions give unambiguous informa- 
tion only on the shorter interatomic distances. Further in- 
formation can possibly be obtained by taking the basic par- 
ameters determined from the g~(r) functions and computing 
theoretical G~(s) or ~l(s) functions for which supplementary 
parameters are chosen by a least-squares fitting to the ex- 
perimental G~(s) or G~(s) functions. A starting point could 
be the Fourier cosine transform of equation (5), 

GI(s)= ~" wiHi(s ) cos 2xris, (6) ' 
i=l  

where H~(s)=exp(-2rc2a~s2). From the experimental g~(r) 
functions a good first approximation for the ri values and for 
some w~ and a~ values of lower i could be deduced, the higher- 
order ones are then determined by trial and error. Since ~, l(s) 
is related to G~(s) by 

GI(S) =2s3 ~ Gx[(s 2 + y2)1/2] 
dy t7) 

J 0 (S 2 +y2)2  

and since the terms corresponding to Hi(s) cos 2~zr~s in a 
series development of Gt(s) are not obtainable in a closed 
form, the most practical way for a trial-and-error method 
for ~l(s) functions is probably the computation of Gl(s) 
according to equation (6) and a subsequent conversion to 
~ ( s )  using equation (7). 

While these possibilities have to be tested in further studies, 
there is already some interesting information obtainable 
from the data given in Table 2. First of all, the ratio ddL 
gives the volume fraction of crystalline domains within the 
stacks of lamellae, a parameter which is often referred to as 
the 'linear' crystallinity. In contrast to other methods, e.g. 
that of Tsvankin, Zubov & Kitaigorodskii (1968), this value 
of linear crystallinity does not depend on the validity of the 
structural model chosen for the evaluation. A comparison 
with the bulk crystallinity obtained by other methods (wide- 
angle X-ray diffraction, calorimetry, density) shows that the 
values for the linear crystallinity are always equal to or larger 
than those of the bulk crystallinity, which suggests that the 
difference between the two values is due to the presence of 
amorphous domains which are not part of the lamellar 
structures. The ratio of the bulk crystallinity to the linear 
crystallinity is, accordingly, the volume fraction vt of lamellar 
structures. These values are shown in the first column of 
Table 3. An inspection of these values reveals that the volume 
fraction of lamellar structures is increasing with increasing 
crystallinity and that these structures occupy nearly the 
total volume only in the sample of the highest crystallinity. 

Table 3. Volume fractions of various types of domains 

Sample vt Vz vc Vai Uaa 1)' c 

1 0"70 0'18 0"30 0'22 0'30 0"39 
2 0"71 0"07 0"55 0"09 0"29 0'58 
3 0"79 0"09 0"61 0"09 0"21 0"65 
4 0"86 0"05 0"72 0"09 0"14 0"74 
5 0"94 <0.01 0"83 0" 11 0'06 0'83 

The existence of a finite thickness of the domain bound- 
aries poses the question of the volume occupied by these 

boundaries. To a first approximation the fraction Vz of the 
total volume occupied by these boundaries is 

2dzVl 
V z - -  

L " 

The values obtained are listed in the second column of Table 
3; they show that Vz is not negligibly small except for the sam- 
ple with the highest crystallinity. If the values for vt and Vz are 
considered, it is obvious that a complete balance of volume 
fractions involves the description of the structure in terms of 
a four-component system: crystalline domains (volume 
fraction vc), amorphous domains inside the lamellar struc- 
tures (vail amorphous domains outside the lamellar struc- 
tures (Va~) and domain boundaries (vz). Since the domain 
boundaries are predominantly within the lamellar structures, 
half of the value of v: has to be subtracted from the volume 
fraction v'c of crystalline domains as determined on the basis 
a two-component approximation, e.g. wide-angle X-ray 
scattering, calorimetry, density, and the other half from the 
volume fraction of the amorphous domains inside the lamel- 
iar structure. Hence 

vc = v'~ - Vz/2 

V a i  ~ V l - -  V c - -  V z 

V a a  : 1 - Vl . 

The values obtained for these volume fractions together with 
the values ofv'c are listed in columns 3 to 6 of Table 3. Except 
for sample 1, the values of v~ are only a few percent lower 
than those of v'~, a difference which could be considered as 
still within the limits of error of a crystallinity determina- 
tion. Of more interest is the observation that, except for 
sample 1, the values of vai are about the same for the rest of 
the samples and that the increase of v~ is mainly due to a de- 
crease of v,,, which means an increase of yr. 

On account of the small number of samples studied it 
does not seem appropriate to discuss the results any further. 
The work has shown the potential of a more detailed anal- 
ysis of the small-angle scattering data. An application of this 
method to a larger number of samples with a well defined 
history can be expected to increase our knowledge about the 
change of the lamellar structure as a function of various 
parameters determining the crystallization behaviour of 
polymers. 

The authors are indebted to the Deutsche Forschungs- 
gemeinschaft for sponsoring this research project. 
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