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An evaluation method for SAXS-patterns of fibrillar two-phase systems
containing oriented particles of moderate anisotropy

and short range correlation
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Abstract: Starting from the theoretical background of Rulands interface distributions, an
evaluation method for small angle x-ray patterns arising from oriented fibrillar two-phase
structures is proposed. If the fibril contains highly oriented particles with only moderate
anisotropy and if the correlations between those particles within the fibril are of short
range only, every axial section of the scattering pattern shows a one dimensional Porod
law. A procedure of successive model confinement using the well known tools of nonli-
near regression analysis is described. The result of such an analysis for the scattering pat-
tern of an oil diluted SBS block copolymer recorded with synchrotron radiation under
first-cycle stretching is reported. AtA = 4. . four contributions to the scattering pattern
could be identified: a) fibrils containing well-defined cylinders standing upright; b) fibrils
containing lying cylinders under destruction; c) stretched-out polybutadiene chains,
connecting two polystyrene cylinders and causing the observable layer line patrern; and
d) stretched-out polybutadiene chains looping through the neighboring PS domain and
returning to their starting domain. In addition, a simple method for determining the
height-to-diameter ratio of cylinders from the form factor envelope is proposed.

Key words: SAXS, oriented fibrils, block copolymers, drawing, synchrotron radiation.

1. Introduction

Under first-cycle stretching of oil-diluted SBS block
copolymers Polizzi and Bésecke [1] observed SAXS
layer line patterns within an ellipsoidal particle form
factor. Figure 1 shows one of the most detailed pat-
terns, collected with a Vidicon-System at the Ham-
burg synchrotron radiation laboratory (HASYLAB).
Due to the large blind spot of the primary beam stop, it
is not possible to observe the layer lines on the rotati-
onal axis of the pattern. SAXS studies of similar sam-
ples under strain recently have been published by
Pakula et al. [2] and Séguéla and Prud’homme [3].

The layer lines suggest that a perfectly oriented
one-dimensional structure does exist. A simple model
to explain the ellipsoidal envelope is that of highly
oriented cylindrical particles with a height-to-diamet-
er ratio of about 2. Due to the dominant form factor
Porod’s law cannot be found in the scattering pattern.
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Therefore a new theoretical approach shall be put for-
ward, adapted to a regression analysis in reciprocal
space.

2. Theoretical
2.1 General definitions

Let 7 be the vector in physical space and § the scat-
sin 0

T A
is the wavelength of radiation, 2 § the scattering angle.
Let 4 o(7), the electron density difference, be defined
by Ag(r) = a(F) — {e(F))y.  )v denotes the average
over the irradiated volume. Then the scattering inten-
sity 1(§), arising from 4 o(F), is given by

I(5) = 1.7 [4e(M])? )

tering vector in reciprocal space with |§] =2
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Fig. 1. SAXS-contour plot of an oil diluted (50 wt % paraffinic min-
eral oil) SBS block copolymer sample under first-cycle stretchingat
a draw ratio of 1 = 4. Measurement with synchrotron radiation at
Hasylab, Hamburg

with the Fourier transform .7 [ ] being defined as
F @@ =illg () 7 @ r. @

In this work I(s) is assumed to show cylindrical
symmetry

1(s) = I(s,3, 85) (3)

with §,, defining the radial and s; the axial component
of the scattering vector. Under this assumption a con-
venient scattering curve I is a section parallel to one
of the cylindrical coordinates

Isc(SS) = 1(3127 SS) 13,2 = const.

or
Isc(slz) = 1(812: SS) |53 = const. * (4)

The sections through the origin of reciprocal space
(“origin sections”) shall be written as

U(S))]s,2 = I(s,5, S5) s, =0 = (0, s)

“(5)153 i=1(s,5, 55) ls, =0 = (s, 0). ©)

Furthermore, if I(s,,, s5) = g (s,,) - A (s5), is product
separable, any of the sections according to Eq. (4) is
proportional to the corresponding origin section
according to Eq. (5).

2.2 The scattering of a single cylinder

Cylinders represent an appropriate model to de-
scribe particles with moderate anisotropy, the
decrease of the height-to-diameter ratio describing the
change from rods to disks (finite lamellae).

In real space let us assume a single cylinder of height
h. and diameter d_, oriented in r5-direction. The elec-
tron density of the cylinder is assumed to be 1 and that
of the surrounding matrix to be 0. From Eq. (1) it fol-
lows for the cylinders scacttering intensity I.(S)

Ic(gj = Vg JmC2 (ﬂ dc 812) - sinc’ (ﬂ hc SS) (6)

with V, being the cylinder volume, sinc (x) := sin
(%) [x and Jinc (x) :=2 J; (x)/x, where J; (x) is the Bes-
sel function of first kind and first order.

If one identfies the main contribution to the ellip-
soidal form factor with a function of the type I,(5), the
experiment mentioned in the introduction shows that
its axial term Jinc® (7 d, s,,) as well as its radial term
sinc? (7 h, §;) are only observable in the interval (0, s,).
s, denotes the first zero of each term. For larger s the
scattering pattern 1s governed by statistical noise, the
weak tail of the terms discussed and density fluctua-
tions within the phases.

Comparing the shapes of Jinc® (7 d, s) and sinc® (7
k. s) (see Fig. 2), it turns out that it is impossible to dis-

1
f(s)

0 Pttt S
0 s 2

Fig. 2. Formfactor f(§) =Jinc® (1.17 7 s,5) - sinc” (n 85) of a cylinder
with diameter d. = 1.17 and heigth #.=1 in radial (———) and in
axial (—) “origin sections”. In the radial section s is defined s: =
S12, and §: = s3 for the axial secticn '
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criminate between both functions in the observable
interval [0, s,]

Jiné (n d, s) ~ sinc (m b, s) ford. =117 - b, (7)

with an accuracy of better than 0.5 % of the maximal
value.

To get the dimensions of the cylinder, one thus
would have to find the first zeros of the form factor in
both s, and s; directions, 5,5, and s;,. Heightand di-
ameter of the cylinder then are given by

hc = 1/832

d, = 1.22/s,,, (8)

In practice it will be difficult to determine %, and d. by
searching s, ,, and s5,. This is due to decreasing signal-
to-noise ratio in the outer part of the scattering pattern
and modulation by interparticular scattering in the
inner part. Anyway, the affinity of shape according to
Eq. (7) at least allows the ratio h,/d, to be determined
from any outer ellipsoidal contour line. Let a;, be the
length of its half axis in 5,,-direction, and a5 the length
of its half axis in s;-direction, it follows that

_h_c__ ao
dc - 1.17 . 613 ’ (9)

Of course, for an ensemble of cylinders this is only
correct if the cylinders are highly oriented with little
variation of their dimensions.

2.3 The scattering of fibrils

If the SAXS pattern shows cylindrical symmetry,
the observed reflections being continuous layer lines,
the interparticular scattering in the simplest case can be
described in terms of a one-dimensional model of par-
ticles arranged within a fibril, neglecting any correla-
tions among different fibrils. The information on the
fibrillar morphology is then contained in the section
through the scattering pattern perpendicular to the
layer lines, I;, (s5)

Iy, (s5) := [1(9)];,, - (10)

Under the assumption of perfect orientation one
can directly identify

Iy (85) = I(s5) s (11)
the one-dimensional scattering curve caused by
cylinders arranged in a fibril. Ruland’s theory of inter-
face distribution functions [4] is able to describe I, (s;)
without any assumptions on the length of the fibril or
the statistics of cylinders and gaps in between. In an
earlier work [5] it was shown that the distance distri-
butions #; (r;) from that theoretical approach could be
approximated by Gaussian functions

(rs — d,-)Q)

20?7 (12)

1
h; (rs) = oo exp (—

with g;, the variance of the Gaussian distribution, de-
scribing the width of the distance distribution and d,
the mean distance between an arbitrary phase bound-
ary and its i-th neighbor.

This approximation led to a compact formula in
reciprocal space, describing I,(s;) by a sum of atte-
nuated cosine terms, multiplied with Porod’s law

I(s;) = Ap/S§ 1 - ; w; Hi(ss)]

H,(s;) = cos 2m d; s5) - exp (—2n” 07 5)  (13)
with A, being the asymptote of the one-dimensional
Porod law and H .(s5) = .F [h;(r5)]. The parameters w;
(taking into account the multplicity and sign of the ;)
and d, describe the general model of the one-dimensi-
onal structure. If one decides on number and succes-
sion of basic distinguishable heights in the one-dimen-
sional structure, all the w; are given and the d; can be
reduced to those basic heights (e.g., the mean height of
the cylinders and the mean height of the gaps in the
fibril). As one can see, I,(s;) is successively approxi-
mated by the terms in the sum.

In this general model the increase of the g; describes
the loss of correlation with increasing distance from
any arbitrary phase boundary. A further reduction of
the parameter set can be accomplished by assuming a
statistical model for the cylinders in the fibril.

2.4 Infinite fibvils

To describe an infinite fibril, one has to extend the
sum in Eq. (13) to infinity. As mentioned above, the
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first step in reducing the parameter set is to decide on
the number and succession of basic heights.

2.4.1 Statistical models for two basic heights in the fibril

Let us first discuss the most simple case of two basic
heights in the fibril and name those the mean cylinder
height, A, and the mean gap height, A,. Then for the
parameters w; and d; it follows [5]

w;, =1 fori #+ 3n,
wi=_2 fori=3n.
d; =n(h, + hy) fori = 3n,

d; =n(h, + k) + h, fori =3n+1,

d;=nh, + k) + b, fori=3n+2. (14)
Thus all the d; are expressed in terms of A, and h,.

A model for fibrillar statistics with good long range
order is that of an “inhomogeneous system with exact
lattice” (Kratky, cited in Porod [6]), where each fibril
is assumed to be a perfect lattice with the lattice con-
stant varying from fibril to fibril. In a previous paper,
Ruland [5] named this model a “homogeneous L dis-
tribution” and gave the formulas reducing the o; for
this and the models to be described in the followmg

The model of a one-dimensional paracrystalline lat-
tice assumes the lattice constant and the height 4, to
vary independently within each fibril. The poorest
model inherent long range order is represented by the
stacking statistics, where A, and #, vary independ-
ently. For the last two models equatlons avoiding an
infinite sum can be given [7]

1) = 4/ 11— Go9) + Gul9)- G,] (15)
with G, (s) denoting a background, G,(s) an attenuat-
ing factor, and G, (s) a lattice factor. For the ease of
notation we define

Ai(s) : = exp (— 27% 6%5?) and

O;(s) : = cos 2n d; s) (16)
as simple attenuating and oscillating terms. Then for
the paracristalline lattice statistics the G-functions of
Eq. (15) are given by

Gy(s)
G,(s) =

= H,(s) = O,(s) - Ay (s)
[1 - O(s)] - Al*(s)

1 — A3(s)
G =TG- 2 50

~1 (17)

and for stacking statistics

Gy(s) =1+ H,(s) + H,(s)

As(s)
G,(s)=1- Ing(s)
- [A(s) - O4(s) + Ay(s) - Os(s)

— As(s) - [Hy(s) + H,(s)]]

1 — A5(s)
1+ A3(s) — 2. Hy(s)

G.(s) = (18)

Since the summation does not need to be perfor-
med, Eq. (15) can be computed faster than Eq. (13). On
the other hand, Eq. (13) together with the conditions
according to Eq. (15) can be used to choose the appro-
priate statistical model for a given set of data. For that
purpose regression analysis with free parameters g,
can serve as a tool.

If the general model is not adaptable to the data, the
series of g; will be of no physical sense (e.g., if 05 were
very high and 06 low, it would be rather improbable to
find the next cylinder close to the mean distance from
the first one, while the cylinder after the next were to
be found within a narrow range of distance). In this
case there will be more than two basic heights either
within each fibril or within a multi-component fibrillar
system.

2.4.2 General model for one cylinder height and a
bimodal gap

A very simple model for a fibril with more than two
basic heights is made by the assumption of two differ-
ent gaps in the fibril (see Fig. 3a). The short and long
indices of the first 16 distinguishable distances as well
as the weights w); are given in Table 1. Because of the
fact that the repetition unit in the fibril contains two
particles of each kind, the absolute value of the w; is
only half the number of realization possibilities in the
fibril. The sums reducing the d; to the three basic
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Fig. 3. a) Model of an infinite stack with three basic lengths: A,
(cylinder height), h,, and A, (gap heights); by model of a finite fibril
containing just two cylinders. If the gap height is very precise over
the ensemble, the fibril is called a string

heights can easily be deduced from the long index of
the distance, where 1 means a height of &1, 2 a height of
hg,> and 3 a height of A,,.

2.5 Finite fibrils

Equation (13) describes finite fibrils, if the sum is
limited. For the most simple case we only take the first
term of the sum and get the scattering of an ensemble
of isolated particle heights. The variation of those
heights is described by the parameter g,. Considering
just one single cylinder of height A, (and trivially g, =
0), Eq. (13) exactly represents the radial section of

Eq. (6)

[Ic('s_)]slz = V? - sinc’ (ﬂ h. 83) = Aplsg

-[1 — cos (27 A, s5)] (19)

with A, = V2[(27?% K2).

Now the scattering of two cylinders of height A,
with a gap A, in between (see Fig. 3b) shall be comput-
ed. Followmg the geometrical scheme to determine
weights of all the distances to be found in the model,
Eq. (13) becomes

Table 1. The first 16 distances of a one-dimensional model with
three basic distances. The long index describes the series of the basic
distances; w; is the weight according to Eq. (13)

i long index w;
1 (1) 1.0
2 2) 0.5
3 3) 0.5
4 (12) ~1.0
5 (13) —-1.0
6 (121) 0.5
7 (131) 0.5
8 (213) 1.0
9 (1213) —2.0
10 (12131) 1.0
1 (21312) 0.5
12 (31213) 0.5
13 (121312) ~1.0
14 (131213) -1.0
15 (1213121) 0.5
16 (1312131) 0.5
I,(s5) = A,[s3-[1— cos[27 55 ] - exp [— 2% 0% 53]

— % - cos [27 s5 K] - exp [~ 27 03 s3]

+ cos [27 s5(h, + hp)] - exp [— 2n% 0% s3]

5 cos (27 85 (B + hy + )]

~exp [-2n% o} s]]. (20)

Let a “string” be defined by the assumption that the
height of the spacer gap is well defined (0, = 0), while
both the 41, in the ensemble vary independently. For an
example, let h, be nine times #., and 0, (i.e., the varia-
tion of the A,) ‘be very high (0, /h, = 0 5). Then Fig. 4
shows the comparison of the curves s? - I,(s,) (s, = s5 -
(k. + h,)) between the string and an mﬁmte stack with
the same parameters. As one can see, the scattering of
the string shows reflections less sharp with their ampli-
tude modulated in a significantly different way than
those of the infinite stack.

2.6 Imperfect orientation of particles with moderate ani-
sotropy

As soon as the orientation of the assumed fibrils is
no longer perfect, for large s; we will not find the one-
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Fig. 4. Interference functions s? - I (s,) for fibrils with perfect gap 2) 0 1 2 3 ST
length. (—): infinite stacking model; (- - -): finite string model.
s, = 83 - (h. + hy), reduced length of scattering vector 10
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dimensional Porod law with a decrease proportional 75 [ R 1
to 532, as intended by Eq. (13), but find the known == 1 e —= =
decrease of the three-dimensional Porod law propor- —& | E
tional to s3 ¢. For small s5, on the other hand, asignifi- | & - -
cant change of the scattering curve due to the soid — | ]
angle average will not occur (Porod [8]). The amount
of the effect for small values of s strongly depends on 0.1
the amount of misorientation and on the anisotropy of ~ b) 0 L 2 3 5 4

the base particles. The form factor of spheres
obviously will not be altered, while infinite lamellae
can be considered to follow the s5# law in the whole
observable interval.

Let us consider cylindrical particles with their prin-
cipal axes homogeneously smeared out over a cone
opening of 2a = 20°. Then the normalized axial sec-
tion through the intensity pattern under misorienta-
tion, [I,,,];,, is caused by averaging the linear scatter-
ing intensity I,. For the following considerations the
normalization shall be given by

I—Imo‘ls12 (SIS = 0) = 11(83 = O) . (21)

Now the effect of misorientation on the axial section of
the scattering curve can be described by the ratio
[1m0ls, /1, - Figure 5a shows this ratio for the pure struc-
tural factor of cylindrical particles with various k. /d.-
ratio, plotted vs a reduced scattering vector s, = k. - Ss.
The curves were obtained by numerical integration.

Fig. 5. a) Effect of misorientation on the axial component of the
structural factor of cylinders with various height-to-diameter ratios
hjd,. (-~ y:rod, (hefd. =10). (-==): hjd, =1. (—): lamella,
(hoJd. = 0.1). s, = s3 - h. b) Effect of misorientation on the axial
component of fibrillar scattering. Acfd. = 2,h; =4 - h,, 0, =0 (all
cylinders identical). (--—-~ J: 0, = hy[10 (long-range correlation).
( ): 0, = hyf2 (short-range correlation). s, = s3- (he + hy).Cur-
ves obtained by numerical integration. Integral width of pole figure:
2a = 20°

They show that the particle least anisotropic (h./d, =
1) is very similar to a rod (h./d, = 10). Misorientation
for both particles causes the peaks to shift and become
asymmetric rather than causing the curve asa whole to
follow an additional s; 2 law. On the other hand, for
lamellae (k. /d, = 0.1), misorientation causes [Lls.,/I1

to behave like a Lorentz function even in the consid-
ered interval of the scattering curve.
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Now let us assume an ensemble of identical cylind-
ers with k. /d, = 2, close to the value suggested by ex-
periment. Let those cylinders be arranged in fibrils,
perfectly oriented with respect to the fibrillar axes, and
let misorientation be caused by fluctuations of the
fibrillar axes as a whole. Let the gaps follow stacking
statistics, the mean height of the gaps being h, = 4 - A..
Then Fig. 5b shows the effect of misorientation 2 & =
20°) for various amounts of long range order in the
fibril. Even for rather a good long range order (g, = 0.1
- h,) the effect of misorientation seems negligible. Thus
we can approximate

“mo]su(ss) =c-I,(s5) (22)

with ¢ being a constant.

2.7 Non-origin sections

In the case of a general section perpendicular to the
layer lines, not containing the origin of reciprocal
space, itis not easy to carry out the solid angle integra-
tion to compute the effect of misorientation. But if
misorientation is small enough and the section is cho-
sen as close as possible to the origin of reciprocal space,
it should be allowed to transfer the result for the origin
section (Eq. (22)) to the non-origin section as well.

In the latter case the constant of proportionality, ¢,
will additionally be reduced by the radial term of the
fibrillar scattering. Thus, considering a multi-compon-
ent fibrillar system, it will be impossible to gain infor-
mation on the true fraction of each component
without additional assumptions on degree of orienta-
tion and fibrillar diameter for each component.

3. Regression analysis tools

Regression analysis was carried out using the Sim-
plex algorithm of Caceci and Cacheris [9]. To estimate
the quality of the fit, the program was extended by sev-
eral procedures according to Draper and Smith [10]

— Computation of the asymptotc correlation
matrix, yielding information on parameter correlation
(to avoid overparametrization);

— Computation of the asymptotic intervals of con-
fidence for each parameter value;

— Plot of the estimation error (to avoid underpara-
metrization);

— Plots of data and fitted curve.

For every tested model each data set was processed
at least twice to avoid a random termination of the
algorithm. To avoid regression to a relative minimum,
the residual sum of squares for a series of curves was
demanded to be of the same order of magnitude. If not
fulfilled, starting values were varied (a “series of
curves” means same sample, varying elongation). If
parameters were varied towards zero, they were
removed from the model. Afterwards a computation
with the simpler model was carried out.

4. Example of data analysis

The scattering pattern shown in Fig. 1 now shall be
used to explain the special process of regression analy-
sis. The sample is a SBS block copolymer spun cast
from toluene solution at the Chemical Research Insti-
wte (ICECHIM), Bucharest, Romania [11]. The
sample contains 50 wt9% of a highly paraffinic mineral
oil fraction. The molecular weights M,,[g/mole] of the
blocks are 21200-80 800-21200.

The data set is made up from a section in s;-direc-
tion near the edge of the primary beam stop. One-half
of the 256 channels is disturbed because of cutting the
edge of the beamstop, and a few channels in the outer
part show a nonlinearity, possibly due to wear of the
Vidicon target. For that reasons the final set covers 92
points of data in the interval s; € (0, 0.024 - nm™'].
Data preprocessing only involves background correc-
tion and normalization to sample thickness, primary
beam intensity and absorption, as described in [1].
Wavelength of synchrotron radiation was 4, =
0.15 nm. Data points were not smoothed, so that the
intervals of confidence, calculated for every parameter
by the regression algorithm, take into account the sta-
tistical noise due to counting statistics.

According to Eq. (13) it seems appropriate to mul-
tiply the raw data by s3 for regression analysis and
check the fit after compensating this transformation.
The desired effect of this transformation is a distortion
of the statistical weights of the measured data points,
yielding larger radii of convergence for the regression
algorithm. On the other hand, this will cause a faint
component of the system to become indeterminate
due to the enlarged statistical noise in the outer part of
the curve. As a compromise, a quadratic weighting
function was applied so that the last data point was half
the weight of the first.

The first step in data analysis was the verification
that the density fluctuation background is not a signifi-
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Table 2. Fitted parameters for double fibrillar stacking statistics of
an oil-diluted SBS copolymer (50 wt% of paraffinic oil) at an elon-
gation of 1 = 4

Parameter value interval of confidence
Ap, 1st stack 0.68 + 0.01
h, [nm] 28 +0
hg [nm] 131 + 6
0,/h. 0

03/h, 0.39 + 0.03
Ay, 2nd stack 0.14 + 0.02
h. [nm] 29 + 8
hy [nm] 154 +9
ok 1.6 }05
Oofh, 0.20 + 0.03

15 S—
// \\
! N
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/I \\
/
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— 1-‘
™
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0.51
0 T T T
0 1 s3x10%nm 2

Fig. 6. Data (---) and fit (——) for double infinite stacking statis-
tics on the interference function §2 - I,(s5). The sample is a SBS
block copolymer diluted with 50 wt % of paraffinic mineral oil atan
elongation of 4 = 4. Data were obtained from an axial section of the
scattering pattern (see Fig. 1) close to the primary beam stop

cant parameter. For this purpose the plain structural
factor of a cylinder in axial direction was used as a
model. This model is able to fit the coarse shape of the
curve, neglecting the interparticular scattering. To this
model a constant fluctuation parameter was added. It
turned out that the latter parameter was iterated
towards zero.

The next step was the use of Eq. (13) plus Eq. (14)
(“two basic heights”) with a series of 10 free varying o;
parameters. The behavior of this series should help
further model confinement. The result was the follow-
ing series of g;/nm: (8, 59, 58, 55,127,108, 103, 63, 67,
61). Decreasing g; with increasing i show that there
should be more than two basic heights in the sample.
Unfortunately for this special set of data the quality of
this statement is poor. But other curves (those without
distinct layer lines) show the same behavior and good
quality of the fit.

After that, the bimodal gap model (see Table 1) was
tested. This model, as well, was not able to cure the
lack of unreasonably decreasmg g; (for the present
curve, using the long index notation, e.g., 0,53 = 150
am and 012131 = 100 nm).

In the next step two parallel models were assumed.
Because of the fact that the double model with freely

varying g; shows strong correlations between parame-
ters, the three basic models proposed (homogeneous
L-distribution, paracristalline lattice, and stacking sta-
tistics) were instead tested in any combination. It
turned out that the homogeneous L-distribution is not
able to fitany of the curves, while itis difficult to distin-
guish between the two latter models. The model with
double stacking statistics gave the best residual sum of
squares, so it was used further on. All the data sets ana-
lyzed up to now can be excellenty fitted with the
double stacking model if the modulations due to pos-
sible layer lines are neglected.

Figure 6 shows the original data transformed to the
interference function s2 - I (s5) and the best fitted curve
for a double stacking statistics. The residual sum of
squares for this fitis RSS =4.6 - 10~ and the asymptot-
ic correlation matrix shows one (reciprocal) correla-
tion between the weights of the two components. The
parameters of the fit are given in Table 2. Looking at
the weights (i.e., A, Porod’s asymptote) one can see
that the main contribution to the scattering comes
from the first stacking model. This model describes
fibrils with excellently precise cylinder heights of
28 nm, so that the stacking statistic is solely caused by a
40 % variation of the gap heights. The second contri-
bution to the scattering describes a stacking model
with widely spread cylinder heights, but relatvely
well defined gaps (20 % variation).

Figure 7 shows the plot of the residual “interference
function minus the fit” causing the layer lines. This
residual cannot be fitted with any of the infinite
models, but it strongly resembles of the scattering of a
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Fig. 7. Residual plot of a fit on the interference function s2 - I, (s;),
based on a double infinite stacking model (see Fig. 6)
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s{[1, (s3)- Iy (sy)]

-5x1072 : — .
0 T 53x10%°xnm 2
Fig. 8. Residual plot of a fit on the interference function s - I, (s5),

based on a four-fold model of two infinite, stacked fibrils and two
string models

string (see Fig. 4). Assuming one additional string
model, RSS = 2.1- 1072 is just halved with still a resi-
dual string model. Only after addition of a second
string model (RSS =5.6 - 107*) does the residual plot
(Fig. 8) seem to closely represent the natural statistical

0 T T T T
0 1 53x102xnm 2
Fig. 9. Original scattering curve (---) and fitted function (——)

based on a four-fold model of two infinite, stacked fibrils and two
string models

noise of the experiment. Due to the transformation of
the scattering curve this noise increases with s? in the
residual plot.

A fitted and original scattering curve is plotted in
Fig. 9, and Table 3 shows the final values of the regres-
sion parameters. The bad asymptotic intervals of con-
fidence for the first string model are due to the correlat-
ed rest in the residual. This causes strong reciprocal
correlations between A, and 1, as well as i, and 0, /1, .
Thusit was possible to get similar values of RSS for this
component with smaller A, but greater g, /h..

By adding a further mode! it was not possible to
increase the quality of the fit for this curve. So the pres-
ent parameter set seems to reflect the maximum o
information to be obtained from data. '

_ 5. Interpretation

Against the background of the model developed in
this paper the scattering pattern of the above thermo-
plastic rubber sample under elongation in progress can
be described by two components of fibrils consisting
of stacked cylinders with only short-range order. The
main contribution to the pattern at A = 4 is given by
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Table 3. Fitted parameter for a four-fold model of two infinitely
stacked and two finite stacked fibrillar components (“strings”) of an
oil-diluted SBS copolymer (50 wt % of paraffinic oil) at an elonga-
tion of A = 4

Parameter value interval of confidence
Ap, Ist stack 0.66 + 0.08
h. [nm] 28 + 07
hg [nm] 141 + 1
o4/h. 0

g,k 0.34 + 0.07
Ap, 2nd stack 0.11 + 0.0t
h, [nm] 27 + 3
hg [nm] 169 i1
o,/h. 1.6 + 02
0a/h, 0.10 + 0.05
Ay, st string 0.09 + 0.05
h, [nm] 8 + 21

h, [nm) 500 + 60

o, /he 0.27 + 1.4
0,/hy 0.04 + 0.02
Ap, 2nd string 0.02 + 0.004
k. [nm] 38 + 3
hg [nm) 242 + 2
o,/h. 0.37 + 0.11
axfh, 0

cylinders with perfect heights of 28 nm and a shorter
gap (140nm). The second stacking model describes
cylinders under destruction with a mean “height” of
27 nm and a wider gap (170 nm).

Anticipating the results of the whole series of curves
with increasing elongation ratios, the first stacking
model can be identified with cylinders standing
upright in the direction of draw, while the other infi-
nite stack contribution represents cylinders lying per-
pendicular to the drawing direction that are just break-
ing apart. Theoretical considerations concerning the
latter component will be given in the following paper
[12] on the whole sample series.

The two faint contributions to the pattern can be de-
scribed by string models (just two PS-domains with a
well-defined PB length in between). The component

with the greater contribution describes PB chains that
are stretched-out completely, while the other string
with a gap of less than half the PB chain length can be
explained by stretched-out chains penetrating the
neighboring cylinder and then looping back to the
starting cylinder. These two distances are well-defined
due to the narrow molecular weight distribution of the
PB-chain. So the perfect definition of a single distance
that is not repeated causes many orders of layer lines to
be observable.

The application of this method to an evidential sub-
set of SBS block copolymers diluted with several kinds
and amounts of mineral oil will be finished in the near
future [12] and will give information on the variation
of the superstructure as a function of draw ratio when
drawing the thermoplastic rubber for the first time.
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