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ABSTRACT The absolute intensity of the small-angle X-ray scattering (SAXS) of poly(ethy1ene tereph- 
thalate) (PET) samples crystallized at different temperatures for different times was measured by means 
of a Kratky camera. The correlation function and the interface distribution function were calculated, and 
the values obtained from different methods for the long period L,  the crystal thickness, l,, the thickness of 
the amorphous regions la, and the linear degree of crystallinity XCL were compared with each other. After 
a critical examination of the different methods, including model calculations of the interface distribution 
function and the correlation function, it is shown that, in the case of a broad distribution of thicknesses, the 
interface distribution function gives the more reliable results for l , ,  la ,  and L. By comparing the linear degree 
of crystallinity x c ~  determined from SAXS with the degree of crystallinity x c  as determined from wide-angle 
X-ray scattering or from density, it is concluded that the material is not homogeneously filled with lamellar 
stacks. The coherently scattering lamellar stack consists of only 3-6 lamellae. 

Introduction 

Small-angle X-ray scattering (SAXS) is a powerful tool 
for the determination of structural parameters of semi- 
crystalline polymers. From the angular position of the 
maximum of the scattering, the long period, L,  can be 
determined by application of Bragg’s law. L is the sum 
of the average thickness of the crystal lamellae, l,, and the 
amorphous regions between these lamellae, 1,. In a more 
elaborate evaluation the linear correlation function of an 
isotropic polymer 

yl(x) = % J m s y [ J o ( 2 ~ x s )  - ~TXSJ,(~TXS)] ds (1) Q 
can be calculated,1v2 where 4 s )  is the smeared SAXS 
intensity as measured by a Kratky camera, V is the 
scattering volume of the sample, s = 2 sin ( @ / A  is the 
value of the scattering vector, and JO and J1 are Bessel 
functions. Q is the so-called invariant, which isdetermined 
by integrating the SAXS over all scattering angles 

Q = 2 a J m s y  ds 

As a consequence of normalization by 8, the correlation 
function becomes 1 at x = 0; i.e., yl(0) = 1. From the 
correlation function, in addition to L the values of I,, I,, 
the degree of crystallinity within the lamellar stacks, XCL, 
and the thickness of the phase boundary between a crystal 
and the adjacent amorphous region, t ,  can be calculated 
by the methods given by Vonk and Kortleve1s2 and by 
Strobl and Schneider.3 Q is, in addition, related to the 
structure of an ideal two-phase model by means of the 
equation 

Q = ~ ( 1 -  x ) A p 2  (3) 
x being the volume fraction of one phase and Ap the 
electron density difference between the two phases. 

Instead of yl(x) one can also calculate the interface 
distribution function introduced by R ~ l a n d . ~  

TXS(J~(~TXS) - ~ J ~ ( ~ T x s ) ) ]  ds (4) 

where G(s) is the interference function of the two-phase 
system. 

This function, actually, is the second derivative of the 
correlation function, gl (x)  = y1”(x) and represents the 
probability distribution of finding two interfaces (between 
a crystal and the adjacent amorphous region) at adistance 
x .  The values of gl (x)  are negative if the sequence of the 
phases is the same at both considered interfaces, as for 
example in the case of the distance representing the long 
period, and are positive if the sequence is not the same, 
as for example for the distance denoting the crystal 
thickness. As shown by Stribeck and Ruland5 by an 
analysis of this function one can obtain L, I,, I,, XCL, t ,  and 
the breadth of the distribution of L, I,, and 1,. 

Poly(ethy1ene terephthalate) (PET) is a suitable ma- 
terial to carry out structural investigations by means of 
SAXS. By varying the temperature and time of crystal- 
lization, states of different crystalline perfection are 
obtained which can be frozen-in by quenching the sample 
from the crystallization temperature to room temp- 
erat~re.6-~ Different authors have investigated the de- 
pendence of the long period and of the invariant on the 
time and temperature of c rys ta l l i~a t ion .~+~~ Measure- 
ments of the absolute SAXS intensity have been performed 
by Konrad and Zachmann15 and by Fisher and Fakirov.lg 
From these measurements the invariant (scattering power) 
Q was determined and conclusions were drawn concerning 
the degree of crystallinity and the density difference 
between the crystalline and amorphous regions. However, 
as far as we know, up till now no calculation of the 
correlation function yl(x) has been performed for PET. 
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The object of the work presented here is to report the 
study of the correlation function on PET samples crys- 
tallized under different conditions and to compare these 
results with those obtained from the evaluation of the 
interface distribution function. A critical discussion of 
the results obtained by the different methods is given. For 
a more detailed interpretation of the results the invariant 
was also calculated. Conclusions on the lamellar structure 
are drawn. It  is shown that such a study on PET is of 
special interest because (1) the variation of crystal 
thickness within the lamellar stacks is comparatively broad 
for this polymer and, as a consequence, the evaluation of 
the SAXS results by simply applying Bragg’s law gives 
inaccurate results and (2) even at the end of the isothermal 
crystallization, the material is not completely filled up by 
lamellar stacks. 

Novel Aspects in Structure of PET 5981 

The method used is based on investigations by Ruland4 
and Koberstein, Morra, and Stein.l9 The variational 
process by which JFI and t are determined is carried out 
in the following way: 

1. The data are plotted in a In [s3(J(s) - JFl)] vs s1.81 
diagramlg (Figure l), which is based on an empirical 
approximation for the smeared scattering of an infinite- 
length slit using a model with Gaussian phase boundaries 

Experimental Section 
PET was synthesized from dimethyl terephthalate and eth- 

ylene glycol with manganese acetate and Sbz03 as catalysts as 
described in an earlier publicati~n.~ The molecular weight was 
determined by viscometry with hexafluoro-2-propanol as a solvent 
and using” the equation 

= 5.2 x 10-4~;695 (5) 
M, was found to be 33 000. Amorphous films were obtained by 
melt pressing in vacuo for 10 min at 280 O C  and quenching in ice 
water. The amorphous samples were crystallized in vacuo at 
three different temperatures (120, 190, and 240 “C) for three 
different times at each temperature, namely, 1,9, and 24 h. From 
previous  investigation^^^^ it is known that spherulitic growth is 
completed in these samples. 

The density, p ,  of the samples was measured in a density 
gradient column containing a mixture of hexane and tetrachlo- 
roethane. The volume degree of crystallinity, xe, was calculated 
by using the equation 

P - P a  
x c  = - 

pc - pa 

The density of the amorphous regions, pa, was assumed to be 
1.338 g/cm3 and that of the crystals, per to be 1.490 g/cm3. As 
was shown earlier,g the values for the crystallinity determined 
in this way agree well with values obtained from wide-angle X-ray 
scattering after applying the method of Ruland. 

The SAXS intensity was measured in a Kratky compact camera 
using Ni-filtered Cu Ka radiation and a proportional counter 
with energy discrimination as a detector. To determine the 
scattering intensity appropriately two different widths of the 
entrance slit were chosen, namely, 60 and 130 pm for 0.013 < s 
< 0.4 nm-1 and 0.3 < s < 1 nm-l, respectively. The adsorption 
factor and the primary beam power per unit slit length were 
measured by using the moving-slit method.ls 

Method of Evaluation 
Determination of the  Interface Distribution Func- 

tion. In the determination of the interface distribution 
function gl(r) we consider that crystalline PET is not an 
ideal two-phase system just consisting of crystalline and 
amorphous regions but that there also exists a phase 
boundary of finite thickness t .  In addition, we take into 
account that local electron density fluctuations are present 
in both regions. The measured scattering curve was 
corrected with respect to the deviations caused by the two 
above-mentioned contributions. Thus, the scattering of 
the corresponding ideal two-phase system, a system which 
has sharp phase boundaries and a uniform density within 
each phase, can be obtained. In what follows, in addition 
to gl(r) ,  we also have determined the thickness, t ,  of the 
phase boundary and the amount of the local density 
fluctuations JFI. 

(7) 

where u is the variance of the Gaussian phase boundary 
and Ap is Porod’s asymptote. The width of the phase 
boundary t is, then, defined as 3u. 

2. The value of J F ~  is varied until the range in which 
the data follow a linear decrease is maximized. 

3. A straight line is fitted to the data in this range. The 
value of Porod’s asymptote AP and u are obtained from 
the intercept and slope of the straight line, respectively. 

4. With the parameters Ap, u, and JFI obtained in this 
way, the interference function Gid(S) of the ideal two-phase 
system is calculated from the measured scattering intensity 
J ( s )  by using Ruland’s formula 
Gid = 

(J (s )  - JF1)s3 
(1 - 87r2u2s2) erfc ( 2 7 “  + 4 ( a ~ s ) ” ~  exp(-4~ 2 u 2 2  s ) -4 

(8) 
In contrast to eq 7, this formula holds strictly and does 
not involve any approximation. If a t  large values of s, the 
curve representing &(S) is not parallel to the s axis, the 
parameter u is corrected by performing finer variations of 
JFI, Ap, and u. Furthermore, the parameter Ap is adjusted 
so that Gid(S) approaches zero for large values of s. From 
this equation one can obtain the interface distribution 
function by means of eq 4. 

5. The scattering of the ideal two-phase system with 
sharp transitions between the two phases and a uniform 
electron density within each phase Jid(S) can be calculated 
from the Gid(S) by means of the equation 

(9) 

The interface distribution function gl(r)  is obtained by 
inserting Gid(S) from eq 9 into eq 4. 

Evaluation of the Interface Distribution Function. 
If I,, la, and L = 1, + 1, were constant throughout the whole 
sample, the interface distribution function would, then, 
consist of several 6 functions with positive and negative 
signs. The appearance of a smooth curve indicates that 
there exist more or less broad distributionsof these values. 
For further evaluation we assume Gaussian distributions 
for I,, la, L,  L + l,, and so on and determine the values of 
1,) la, and L as well as the variances of these values by 
fitting the experimental curves as shown in Figure 2. The 
attempt to assume distribution functions only for 1, and 
1, and to calculate the other distribution functions by 
convolution integrals does not lead to a good fit between 
the experimental and the theoretical curves. Therefore, 
the values obtained for the variances seem to use the 
subject for a more detailed investigation. The results will 
be reported in a separate publication.21 Hence in the 
present paper, we will confine our attention to the average 
values for la, 1,) and L and to the comparison of these 
values to those obtained from the correlation function. 

From the interface distribution function it is not possible 
to distinguish which one of the two characteristic lengths 
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Figure 1. Stein plot to obtain the electron density fluctuation, 
J ~ I ,  the width of the phase boundary, t ,  and Porod's asymptote, 
Ap (ref 19) for the sample crystallized at T, = 120 O C  and t, = 
1 h. 

is 1, and which one is 1,. Therefore, we denote the larger 
length 11 and the smaller one 12. Consequently, the fraction 
of the phase which is present in the lamellar stacks in a 
larger amount is given by 

(10) 

Determination of the Correlation Function. Before 
performing the Fourier transform in eq 1, we subtracted 
the contribution of the local electron density fluctuations 
Jn from the measured scattering intensity and extrapo- 
lated the latter to s = m by applying Porod's law. Following 
the procedure used by other investigators who calculated 
the correlation no correction with respect to 
the finite phase boundary thickness was performed. As 
a consequence, J i d ( S )  given by eq 9 could not be used. 
Instead, we have just subtracted JFI as determined by the 
procedure described by Koberstein, Morra, and Stein.lg 
In contrast to the above we have used for 
the invariant Q (eq 2) the value obtained for the corre- 
sponding ideal two-phase system with a finite phase 
boundary. As was shown by other a ~ t h o r s , l - ~  if yl(x) is 
normalized in this way, one obtains yl(0) < 1. The straight 
line fitted to yl(x) in the region x 1 0 has the intercept 
1 at  the ordinate. This is of help in fitting this line which 
is required for further evaluation and justifies the nor- 
malization used. When we normalize the correlation 
function by using the invariant Q, it  is important to perform 
the extrapolation of J(s ) /  V to large s values because they 
may contribute up to 20% to the Q value, as was shown 
by R ~ l a n d . ~  The corrections seems to be not so important 
for the determination of the shape of the correlation curve. 
I t  is worth pointing out that Vonk2 did not use the same 
normalization as we do in the present study. According 
to his normalization yl(0) = 1. 

Determination of the Structural Parameters from 
the Correlation Function. There are different possi- 
bilities to determine the structural parameters from the 
correlation function. On the one hand, the long period, 
L, can be determined from the position of the first 
maximum in the correlation function (see Figure 3). This 
value represents the most probable distance between the 
centers of gravity between two adjacent crystals. We will 
denote the L values determined in this way by LF. On the 
other hand, L can be determined as twice the value 
obtained from the first minimum of the correlation 
function which is interpreted as the most probable distance 
between the center of gravity of a crystal and its adjacent 
amorphous region. The value determined in this way will 
be denoted LE. If the lamellae form a one-dimensional 
ideal lattice, both values coincide. However, if this su- 
perlattice is not ideal, the position of the maximum, 
LF, and of the minimum, LE/2, in the correlation function 

4 11 
x 1 = m = z  
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Figure 2. Interface distribution function derived from the 
correlation function of Figure 3 illustrating the different length 
distributions. 

may be slightly shifted. As a consequence, different L 
values may be obtained by the two methods. 

Another important parameter is the degree of crystal- 
linity within the lamellar stacks, the so-called linear 
crystallinity, XCL. This quantity cannot be determined 
from the correlation function alone because it cannot be 
distinguished from the amorphous fraction 1 - XCL. 
Therefore, we denote the larger fraction of the two phases 
by x1 and the smaller one by xp. There are two methods2 
to determine XI: 

1. From the equation 
1 -xl  

CY -= 
X1 

where y is the value of the correlation function at  its first 
minimum (see Figure 3) and c is a factor determined in 
such a way that cyl(0) = 1. The factor c is introduced as 
a consequence of our normalization of the correlation 
function. In the paper of Kortleve and Vonkl where yl(x) 
is normalized in such a way that n ( 0 )  = 1, the constant 
c = 1. 

2. From the equation 

~ ~ ( 1 -  xl)LF = A (12) 
where A is the first intercept of the correlation function 
with the abscissa. The values determined in this way will 
be denoted by XI". 

Finally, the thickness of the crystals, l,, and that of the 
amorphous regions, la,  may be determined. Again, as in 
the case of the interface distribution function, it is not 
possible to distinguish between 1, and 1,. We, therefore, 
designate the larger thickness by 11 and the smaller one 
by 12. We can then obtain these quantities from the values 
of L and xl by means of the equations 

I, = xlL (13) 
and 

(14) 
Furthermore, 12 can also be derived2 by means of the 

I, = B (15) 
where B is defined in Figure 3. 

If 12 is determined by eq 15, there arises a new possibility 
to obtain 1 -X I  by using eq 14. This method was used by 
Strobl et aL3 The value determined in this way will be 
called x1L. 

Results 
Figure 4 shows the scattering curves of a PET sample 

crystallized at 240 "C for different times (top) and 
crystallized at  different temperatures for 24 h (bottom). 

1, = (1 - X,)L 

equation 
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Figure 3. Typical correlation function showing the main 
parameters to be used (Hee text). 
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Figure 4. Experimental scattering curves of the PET samples 
crystallized at 240 "C for different times t,  (top) and crystallized 
for 24 h at different temperatures T, (bottom). 

Scattering maxima are obtained in all cases. The annealing 
time does not substantially affect the scattering maximum. 
However, with increasing temperature the maximum shifts 
to smaller scattering angles, which corresponds to a change 
in the long period LB as determined from Bragg's law. 

Figure 5 shows the linear correlation functions obtained 
from the scattering curves represented in Figure 4. One 
can observe different positions of the minima and maxima 
of yl(x) corresponding to the different positions of the 
maxima in the scattering curves. 

In Figure 6 the interface distribution functions obtained 
from the scattering curves in Figure 4 are shown. These 
curves also reveal changes in the position of the minima 
which correspond to the different long periods appearing 
in Figure 4. 

In Figure 7 the long period, LB, for a PET sample 
crystallized a t  various temperatures for 1 h obtained from 
the maximum of the scattering curve, after subtraction of 
the background scattering and application of the Lorentz 
correction,20 is compared with the long periods LF and 
LF obtained from the first minimum and the first 
maximum of the correlation function, respectively. In 
addition, the long period obtained from the minimum of 
the interface distribution function without any correction 
LI and the one obtained after doing the separation of the 
different contributions, LIS,  are shown. 

As one can see, the values obtained from the interface 
distribution function are considerably lower. In the case 
of no overlap correction (curve LI)  the discrepancy is 
smaller than after performing such a correction (curve 
LIS) .  In all cases, a considerable increase of L with 

x (nm) 
Figure 5. Linear correlation function TI(%) of the same samples 
as in Figure 4 crystallized at 240 O C  for different times t ,  (top) 
and crystallized for 24 h at different temperatures T, (bottom). 
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Figure 6. Interface distribution function for the same samples 
as in Figure 4 crystallized at 240 "C for different times t ,  (top) 
and crystallized for 24 h at different temperatures T, (bottom). 

crystallization temperature T, is observed. Similar results 
are obtained in the case of other crystallization times t,. 
It is seen that at shorter crystallization times the long 
periods become slightly smaller. All experimental data 
are summarized in Table I. 

We wish to mention that the values of LB obtained by 
applying Bragg's law without brackground subtraction and 
Lorentz factor corrections are larger by a factor of 1.8 
than the Lg values given. This difference may be due to 
a broad distribution of L values. 

Figure 8 shows the fraction X I  of the phase present in 
a larger amount within the lamellar stacks as obtained 
from SAXS using the different evaluation methods (eqs 
1 1 , 1 2 , 1 4 ,  and 10). In addition, the corresponding results 
for the other crystallization times are presented in Table 
I. 

It is interesting to note that the 3c1 values shown in Figure 
8 are nearly independent of the temperature of crystal- 
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Table I 
Experimental Values for the Density, p, the Volume Degree of Crystallinity, x,, the Long Period, L, the Larger Thickness, 11, 

of the Two Phases, and the Linear Degree of Crystallinity, xl, Obtained by Using the Different Evaluation Methods' 
T, = 120 "C Tc = 190 "C T, = 240 "C 

t c ,  h 1 9 24 1 9 24 1 9 24 

P ,  g/cm3 1.376 1.381 1.382 1.393 1.394 1.396 1.403 1.408 1.416 
XC 0.25 0.28 0.29 0.36 0.37 0.38 0.43 0.46 0.51 
L" nm 6.8 7.2 7.2 9.0 9.0 8.4 12.0 10.4 11.2 
LC I2 , nm 7.1 7.0 7.4 10.0 9.4 9.4 12.3 10.8 11.8 
4, nm 5.6 5.8 5.8 7.8 8.0 7.8 9.8 9.4 9.8 
LIS, nm 3.9 5.4 4.9 5.3 7.1 7.3 6.9 7.7 8.2 
lm , nm 4.7 5.0 5.0 6.3 5.9 5.4 7.2 7.1 8.0 
l , ~ ,  Af nm 5.0 5.0 5.4 6.5 6.4 6.4 7.5 7.6 8.0 

X'lm 0.69 0.69 0.69 0.72 0.67 0.71 0.70 0.68 0.69 
x1" 0.70 0.71 0.73 0.75 0.68 0.71 0.74 0.70 0.68 
XlIS 0.70 0.61 0.61 0.65 0.66 0.63 0.68 0.69 0.70 
XlL 0.69 0.63 0.62 0.64 0.64 0.60 0.65 0.64 0.68 

his, nm 2.7 3.3 3.0 3.5 3.9 4.6 4.7 5.3 5.7 

a Tc and tc  are the temperature and time of crystallization, respectively. 

15 
L:! t ,=lh I 

I 

0 
100 150 200 250 300 

T,(  " c )  
Figure 7. Long periods obtained by different evaluation methods 
as a funation of the crystallization temperatures T, for the samples 
crystallized during 1 h. Values obtained from Bragg's law (LB), 
from the first maximum (Lt) and the first minimum (Lm) of the 
correlation function, and from the interface distribution function 
without (LI) and with overlapping corrections (LIS).  

1.0 
t,= 1 h I 

- I  

o.oL-- 

Tc("C) 
100 150 200 250 300 

Figure 8. Fraction, x1, of the phase which is present in the 
lamellar stacks to a larger amount as a function of crystallization 
temperature for the sample crystallized for 24 h as determined 
by means of eq 12 ( X I o ) ,  by means of eq 11 with c = 1 ( x d ,  by 
means of eq 11 with c = l/yl(O) (x'lm), and from the interface 
distribution function determined by means of eq 13 ( ~ 1 1 ~ ) .  The 
crystallinity measured by density using eq 6 (x,)  is also given. 

lization. Neither are they much affected by the method 
of evaluation. The constancy of x1 as a function of T, was 
already found in an earlier investigation.'5 In contrast, xc  
increases with T, and is always smaller than XI. If we 
assume that x1  represents XCL, this result would suggest 
that a fraction of the amorphous regions is lying outside 
of the lamellar stacks in which the crystals are regularly 
arranged. With increasing crystallization temperature that 
fraction of these amorphous regions decreases. The other 
possibility is that XCL is assigned to 1 -XI. This alternative 
holds for the samples crystallized at  120 "C (see Figure 8 
and Table I). For the samples crystallized at  190 and 240 
"C 1 - x1 would be smaller than x,, an alternative which 
has no physical meaning. 

- -  I I 

Zt - 
04 1 
100 150 200 250 300 

Figure 9. Values of the larger distance, 11, obtained by using the 
different methods of evaluation as a function of crystallization 
temperature for the samples crystallized for 1 h. The values 
1% and 1% are determined from eq 13 and llls is determined from 
eq 10. 

Figure 9 represents the thicknesses I1 as a function of 
crystallization temperature T, for a sample crystallized 
for tc  = 1 h. The values 1% and 1$ designate the crystal 
thickness obtained from the correlation function by means 
of eq 13, where L is determined from the first maximum 
and first minimum of this function, respectively, and z1 
is determined from eq 11. The values of 111s are determined 
from the interface distribution function. From this plot 
and from the data summarized in Table I is is seen that 
the thickness 11 increases considerably with increasing 
crystallization temperatures, T,, and rises only slightly 
with crystallization time t,. The same behavior is observed 
with 12. 

Finally, we have also determined the invariant 8, the 
electron density fluctuation J F ~ ,  Porod's asymptote Ap, 
and the thickness of the phase boundary t (eq 7). The 
results are presented in Table 11. The invariant Q increases 
with increasing crystallization temperature, while the 
thickness of the phase boundary, t, and the electron density 
fluctuation, JFI, decrease with increasing temperature and 
crystallization time. 

Discussion 
Comparison of the Results Obtained by the Dif- 

ferent Methods. As clearly demonstrated in Figures 7 
and 9, the values of the long period L and of the larger 
thickness 11 derived from the interface distribution func- 
tion are systematically smaller than those calculated from 
the correlation function. To find out whether this is simply 
a consequence of a systematic inaccuracy in the mathe- 
matical treatment, we have twice integrated the interface 
distribution function g l ( x ) ;  the resulting function is, by 
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Table I1 
Experimental Values for the Invariant, Q, Porod's Asymptote, Ap, the Electron Density Fluctuation, &I, and the Width of the 

Phase Boundary, t, for the Different Samples Investigated 

Novel Aspects in Structure of PET 5985 

Tc = 120 "C T, = 190 "C T, = 240 "C 

t,, h 1 9 24 1 9 24 1 9 24 
Q, ez/nms 400 434 410 481 

&I, e2/nm4 535 535 510 510 
t ,  nm 1.05 0.47 0.20 0.25 

Ap, e2/nm7 5.3 4.1 3.9 3.9 

i n  

0.5 
h 
X 
Y 

t,=24h 
0 0 T0=240T 

T,=lBOT 
T,-120*C 

-0.54 1 
0 5 10 15 20 

x (nm) 
Figure 10. Linear correlation functions obtained by means of 
eq 1 for the samples crystallized for 24 h at the three different 
temperatures (data points) and the corresponding correlation 
functions obtained by double integration of gl(x) (solid lines). 

definition, the linear correlation function. This function 
will be designated by yl*(x) to distinguish it from yl(x), 
which we have directly derived from the measured 
scattering intensity J(s)  using eq 1. In Figure 10 the two 
functions are compared with each other. There is, indeed, 
a good agreement between the position of the first 
minimum of y1*(x) and yl(x) as can be also seen in Table 
IV. Though the minimum of yl(x) corresponds to a value 
of L which is a little larger than the one obtained from 
yl*(x), the discrepancy is small in comparison with the 
difference to the value obtained from the first minimum 
of the interface distribution function,gl(x). The difference 
between the first maximum of yl(x) and that of y1*(x) for 
each curve is larger than the difference between the 
position of the minima. However, this discrepancy, too, 
is small if compared to the difference with respect to L 
obtained from the interface distribution function. 

The small difference between yl(x) and y1*(x), including 
the behavior of the correlation function at  x = 0, where 
yl*(O) = 1 in contrast to yl(0) < 1, is due to the following 
reasons: On the one hand,g,(x) is the interface distribution 
function of the ideal two-phase system obtained by 
replacing the phase boundary of finite thickness between 
crystal and amorphous regions in the real system by sharp 
boundaries. Since yl*(x) is obtained by double integration 
of gl(x), it follows that y1*(x) represents the correlation 
function of the corresponding ideal two-phase system with 
sharp boundaries. In such a system, for x = 0 the 
correlation function is equal to 1 and the first derivative 
of the correlation function is negative. On the other hand, 
yl(x) was calculated from the scattering curve of the real 
system in which we have subtracted the contribution of 
the electron density fluctuation J F ~ .  Therefore, this 
function represents the real two-phase system with finite 
phase boundaries normalized by the invariant of the cor- 
responding ideal system. This generally induces the 
correlation function to give yl(0) < 1. 

Since a good agreement between the position of the 
minima of yl(x) and y ~ * ( x )  was found, we conclude that 
the reason for the main part of the discrepancy between 
LI and Lc is a real effect rather than a mathematical 
artifact. The reason for this discrepancy has to be sought 
in the following consideration: 

508 473 517 523 567 
3.5 3.7 3.1 3.3 3.3 
485 482 445 418 436 
0.43 0.37 0.39 0.25 0.00 

:h 
-0.6 op 

-0.6 O-%?- 

-0.6 I 
Figure 11. Linear correlation functions of an ideal model (a) 
and of models with increasing variance in the thickness of the 
two phases (b-d) (see text). 

As was pointed out for example by S t r ~ b l , ~  in a system 
in which ll and 12 have each one single value, the correlation 
function has a constant value in the range of the position 
of the minimum (Figure l la).  If the smaller value, 12, 
varies from lamellae to lamellae, instead of a sharp corner 
a t  point A a smooth change in the slope is observed (Figure 
l lb ) .  If the larger value, 11, varies, the sharp corner a t  the 
edge B is smoothed. As long as the distributions of the 
values of 11 and 12 are comparatively small, the correlation 
function as shown in Figure l l b  is obtained. In the case 
of a broad distribution, however, the curve in Figure l l c  
is found, which shows no region of constant value for yl(x) 
and where the value of yl(x) a t  the minimum is higher 
than in Figure l lb .  In addition, if the half-widths of the 
distribution function of 11 and 12 are different, the position 
of the minimum is shifted. The shift occurs to the right 
side, yielding larger apparent values of L if the distribution 
function of 12 is broader than the distribution function of 
11. This is shown in Appendix A, where it is also 
demonstrated that the value for the long period derived 
from the first minimum of the correlation function is always 
larger than the real value. 

Now by using the interface distribution function it can 
be shown21 that one obtains broad distributions for 11 and 
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Table 111 
Values Obtained for the Invariant by Different Evaluation Procedures. 
T, = 120 "C Tc=190"C T, = 240 "C 

t.. h 1 9 24 1 9 24 1 9 24 

81, e2/nms 1488 1532 1466 1580 1619 1526 1525 1464 1521 
Qz, ez/nma 359 380 375 409 459 405 469 468 504 
Qs, e2/nm6 440 470 461 481 513 471 520 519 563 

Q, ez/nme 400 434 410 481 508 473 517 523 563 

0 81: without doing any correction. Qz: after subtracting the electron density fluctuation. Q3: after, in addition, extrapolation of the 
scattering curve to s = m, assuming sharp phase boundaries. Qd: after extrapolation of the scattering curve to s = m using the method of ref 
19. Q: after taking into account all corrections, including finite phase boundaries. 

84, ez/nme 370 400 400 450 470 450 490 500 555 

Table IV 
Long Period, L, Values Derived from the Correlation 
Function, LF and LE, from the Interface Distribution 

Function, LIS, and from the Correlation Function Obtained 
after Double Integration of the Interface Distribution 

Function, L:m and LLM, for the Samples Crystallized for 24 
h at the Different Crystallization Temperatures 

from ~ l * ( ~ )  L from gl(x)  
L from y l ( x )  

sample L: L,M L,? LTM LIS 
240 "C 11.2 11.8 11.2 11.4 8.2 
190 "C 9.0 9.4 8.5 9.0 7.3 
120 "C 7.2 7.4 6.8 7.0 4.9 

12 and that the distribution of 12 is broader than the one 
of 11. These are exactly the conditions which lead to the 
shift of the minimum in the correlation function to larger 
values. 

In the case of our evaluation of the interface distribution 
function, a broad distribution of 11 and 12 lengths does not 
affect the value of L because we are separating the different 
distributons as shown in Figure 2. If the different 
contributions are not separated, incorrect values are also 
obtained. I t  can be proved that the value LI derived from 
the interface distribution function without separation is 
always larger than the actual value (see Appendix B). 

In summary, the above considerations show that the 
values of LIS, 11, and 12 calculated from the interface 
distribution function are the most accurate ones. Those 
derived from the correlation function are shifted to larger 
values because the distribution of 11 is smaller than the 
one of 12. The values derived from the interface distri- 
bution function obviously are not as sensitive to changes 
caused by a broad distribution function of 11 and 12 as the 
values obtained from the correlation function. This is 
clearly seen by the fact that even without any separation 
of the different contributions togl(x), the values obtained 
fromgl(x) are smaller than those obtained from yl(x) (see 
Figure 7). The model calculations presented in Appendix 
Bare another proof of this statement. A further advantage 
in the evaluation of the interface distribution function is 
the possibility to separate the peaks corresponding to 11 
and 12 and, thus, to correct for the superposition effects 
and improve the accuracy in the determination of the 
average values of 11 and 12. 

Accuracy in  the  Measurement of the Invariant Q. 
As shown in the following section, the interpretation of 
the results strongly depends on the absolute value of Q. 
Therefore, we have carefully examined possible errors in 
the measurement of this quantity. 

First, there arises the question of how reliable the 
moving-slit method is for the determination of the intensity 
of the primary beam. To verify this point we have 
reexamined the geometry of the system, including a very 
careful measurement of the width of the moving slit. 
Therefore, we can exclude any relevant error in the 
geometrical constants. In addition, to double check the 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 

s3(nm3) 
Figure 12. Method of evaluation of the scattering intensity 
according to Ruland' to  calculate the electron density fluctuation 
and Porod's asymptote for the sample crystallized at T, = 120 
"C and t ,  = 1 h. 

calibration of the camera we used a standard Lupolen 
sample, which was kindly supplied by Dr. Zipper from the 
Institut fiir Feinstrukturforschung in Graz. We found that 
the moving-slit method yields a Q value which is 1.5% 
larger than the value obtained by using the external 
standard Lupolen sample. This inaccuracy is small if 
compared to the deviations shown in Figure 13, which are 
of the order of 50%. Therefore, we believe that the 
calibration of the method is satisfactory. 

Second, we have to estimate the errors in the deter- 
mination of Q caused by the possible inaccurate corrections 
of the measured scattering curve with respect to local 
density fluctuations and the finite thickness of the phase 
boundary and also caused by possible errors in the 
extrapolation to large scattering angles. To do this we 
calculate the values of Q from the scattering curves which 
were only corrected with respect to some of the above- 
mentioned contributions. Thereafter, the differently 
obtained values were compared. Let us first calculate Q 
by integration of the scattering intensity as it was measured 
in the region s = 0 to s = 0.35 nm-l without making any 
correction. The obtained values are denoted by QI and 
are presented in the first column of Table 111. 

Let us next take into account the local density fluctu- 
ations while the phase boundary is still assumed to be 
infinitely small and, therefore, of no influence. In this 
case, according to Ruland? for large values of s the smeared 
scattering intensity is given by 

(16) 

When s3J(s)/V is plotted against s3, a straight line is 
obtained. One can obtain the Ap value from the intercept 
and the value of J F ~  from the slope. Figure 12 shows, as 
an example, the corresponding curve for samples crys- 
tallized for 1 h at  240 "C. To determine Q, the value of 
J F ~  was subtracted from the measured curve and the 
remaining intensity was integrated up to s = 0.35 nm-'. 
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smaller than those reported here. In their evaluation they 
have neglected the scattering at  large angles by subtracting 
a constant background from the scattering curves. They 
also subtracted a certain amount of scattering at  small 
angles which they considered to be caused by heteroge- 
neities. Smaller Q values than those reported here were 
previously found by Konrad and Zachmann,15 who also 
neglected the contribution of the scattering at  large angles. 
In addition, one must take into consideration that the 
PET used in the former publications might have a di- 
ethylene glycol content different from that of the samples 
used in the present study. From the foregoing, we conclude 
that the difference between the Qvalues determined earlier 
and our present data is most probably due to the above- 
mentioned difference in the evaluation method and maybe 
in the sample used. 

Comparison of the  Measured Invariant with Cal- 
culated Values. For the interpretation of the measured 
values of the invariant Q we will assume that not all 
material forms lamellar stacks but only a fraction of it, 
which we call XL. Let us recall that XCL is the crystalline 
fraction and 1 - XCL is the amorphous fraction within the 
stacks. Hence, 1 - XL would be the fraction of the material 
formed by larger amorphous regions outside the lamellar 
stacks. Let us take into account two possible models: 

First Model. In this model we assume that the fraction 
1 - XL does not contribute to Q due to the fact that these 
larger amorphous regions scatter a t  such small angles that 
their scattering cannot be resolved. We, then, can write 

0-0 120.C 
A-A 180.C 
.-¤ 240.C 

800 '0° i 

IT' P - 

0 5 10 15 20 25 

t,(h) 
Figure 13. Values of the invariant, Q, for PET samples 
crystallized at different temperatures as a function of crystal- 
lization time. Solid symbols joined by solid lines: Q values 
obtained by integration of the scattering curves using eq 2. Open 
symbols joined by solid lines: Q values calculated from eqs 17 
and 18 with TCL = 0.7. Open symbols joined by dashed lines: Q 
values obtained from eqs 17 and 18 with TCL = 0.3. 

The values of Q thus obtained are denoted by Q2 and 
presented in column 2 of Table 111. 

In a third step we have extrapolated the scattering curve 
to s = by applying Porod's law. The corresponding Q 
values (to be called Q3) are also represented in the table. 
This extrapolation increases the Q2 value by 20%. 

In another way, we calculated Q by subtracting J F ~  using 
the method of Koberstein, Morra, and Steinl9 and after 
extrapolation to s = a, however, without the finite phase 
boundary correction. These values are denoted by Q4 in 
Table 111. 

Finally, the last column in Table I11 presents the Qvalues 
presented in Table 11. In this calculation all corrections, 
including a phase boundary of finite thickness, are taken 
into account. 

By comparing the values of Q obtained in different ways 
one can see that the differences between Q2, Q3, Q4, and 
Q are about f10% while the calculated values of Q 
represented in Figure 13 by the solid lines are lying 40% 
below the measured values. Therefore, we believe that 
the discrepancy between the measured and the calculated 
values in this figure is not caused by an inaccurate 
correction of the measured scattering curves with respect 
to the finite thickness of the phase boundaries or by an 
incorrect extrapolation of the curve. The contribution of 
the local electron density fluctuation is, in contrast, 
comparatively large as can be seen by comparison of Q1 
with the other Q values in Table 111. Therefore, in the 
subtraction of this contribution, in principle, a considerable 
error may be involved. The amount of possible error in 
subtracting this contribution can be estimated by com- 
paring Q4 with Q3, where Jn is subtracted by using different 
methods while all other corrections are performed in the 
same way. One can see that Q4 is about 20% smaller than 
Q3. This difference is still small compared to the dif- 
ference discussed in connection with Figure 13, where 
differences of 40% occur. In addition, we wish to point 
out that by applying the method of Koberstein, Morra, 
and Steinlg in calculating Q4 and Q an upper limit of JFI 
is obtained, resulting in the smallest possible value of Q. 
Thus, we believe that any possible error in Q is negligible 
with respect to the effect discussed in the next sections. 

From the above considerations we conclude that there 
is no systematic error in the measured values of Q. 

It is worthy to point out that Fisher and FakirovlB have 
previously found Q values for PET which are about 40 5% 

where XL is given by 

XL = X J X C L  (18) 
and x c  is the volume degree of crystallinity, which can be 
calculated from the mass degree of crystallinity, as 
measured for example by WAXS, by multiplying by P I P c .  
The XCL vaues were obtained from the SAXS correlation 
function (see Table I); however, it  cannot be decided which 
one of the two values, either x1 or 1 - XI, is identified as 
XCL. 

Figure 13 shows measured and calculated values of the 
invariant Q as a function of the crystallization time t ,  for 
the the three different crystallization temperatures. We 
wish to recall that XI is the largest of the two values and 
that XI is close to 0.7 for all samples. Finally, the results 
obtained under the assumption that XCL = 1 - XI are 
represented by dashed lines and the corresponding open 
symbols. As one can see, no matter which one of the two 
values we choose, there arise ambiguities in explaining 
the measured Q values in this model: 

(a) If one assumes that x c ~  is equal to 1 -XI, a relatively 
good agreement is obtained for the samples crystallized 
at  120 "C. I t  follows that XL = 0.45. However, for the 
samples crystallized at  190 and 240 OC, such an assumption 
is questionable because in these cases XL = xc /xcL  would 
be larger than 1, which, by definition, is not possible. For 
the sample crystallized at 240 "C for 24 h XCL = 1 - XI 
would be 0.32 while x ,  is 0.51. This discrepancy is beyond 
any experimental error. 

(b) If, on the other hand, one assumes XCL = XI, the 
measured values are larger than the calculated ones by a 
factor 1.8 (see Figure 13). Therefore, this assumption can 
only be further considered if some changes in the model 
are introduced. One possibility would be to question the 
valuespc = 1.490 g/cm3and pa = 1.338 g/cm3and calculate 
new values for these quantities in such a way that all results 
were consistent. We have done this by assuming XCL = X I  
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Figure 14. Density of the crystals, pc, and of the amorphous 
regions, p., calculated by means of eqs 19-21 for the samples 
crystallized at different temperatures as a function of crystal- 
lization time. 

= 0.7 and calculating pc and Pa by means of the equations 

P - Pa 
x ,  = - 

Pc - Pa 

where xc is the volume degree of crystallinity obtained by 
multiplying the mass degree of crystallinity, measured by 

Figure 14 shows the obtained results. One can see that 
the values of pc are clearly larger than 1.490 g/cm3 and 
those for pa much smaller than 1.338 g/cm3. The largest 
value ever reported for pc is 1.505 g/cm3.16 Values for Pa 
which are smaller than 1.331 g/cm3 have also been 
discussed.'5J6 However, such values have never been 
unambiguously confirmed. In addition, these new values 
would not agree with the previously observed9 linear 
relationship between the density and the degree of 
crystallinity as determined by WAXS. Therefore, the 
interpretation of the results by assuming the calculated 
values of pa and pc remains questionable. 

In summary, by applying the model in which only a 
fraction of material scatters, one can just explain the results 
on the samples crystallized at  lower temperatures. Com- 
plete consistency of all data is only obtained if uncon- 
ventional values of pc and pa were used. Because of the 
difficulties discussed above, we discard the first model 
and consider the following a second model. 

Second Model. In contrast to the first model, we now 
assume that both the thickness of the lamellar stacks d L  
and the distances between the lamellar stacks ~ I L  (see 
Figure 15) are so small, let us say dL + ~ I L  < 100 nm, that 
the scattering arising from the density difference between 
the regions X L  and 1 - XL is resolved in our measurements 
and, therefore, contributes to the scattering power Q. This 
would imply that each coherently scattering lamellar stack 
consists of not more than 3-6 lamellae. The distances d~ 
and dIL are randomly distributed so that the scattering 
arising from the density difference in the regions XI, and 
1 - XL is continuously decreasing with increasing scattering 
angle rather than showing a peak which would correspond 

WAXS, by PIP,. 

Figure 15. Schematic representation of 4 lamellar stacks 
consisting of crystals (c), amorphous regions (a), and amorphous 
regions between the lamellar stacks (ad. 

e-. 120'C .-. 100.C .-. Z40.C 
'0° 800 L 

Q) 

a - 300 I 
200 1 

t 
0 5 10 15 20 25 

t,(h) 
Figure 16. Values of the invariant, Q, for the samples of Figure 
13. Solid data joined by solid lines: same as in Figure 13. Open 
symbols: Q values obtained from eq 22. 

to any dominant value of d~ + d ~ .  In this case this 
additional continuous scattering will not affect the position 
of the maximum of the correlation function; however, it  
will increase the value of Q. Actually, because the total 
material does contribute to Q, the overall degree of 
crystallinity x c  will determine the value of this quantity, 
and one obtains 

The values of Q calculated in this way are presented in 
Figure 16 together with the experimental values. Ac- 
cording to this second model, a fairly good agreement 
between calculated and experimental results is obtained, 
though some of the calculated values are lying a little higher 
than the measured ones. This difference may indicate 
that a small fraction of the amorphous material lying 
outside of the lamellar stacks does not contribute to the 
scattering intensity. Indeed, the good agreement between 
the calculated and the measured values of Q shows that 
eq 22 rather than eq 19 gives the correct results. 

Electron microscopic investigations12 support our con- 
clusion that there exist larger amorphous regions of 
irregular size between the lamellar stacks. The amount 
of these amorphous regions disturbing the regular ar- 
rangement of the lamellae decreases with increasing tem- 
perature of crystallization T,. This corresponds to the 
increase of XL with T, in our model. 
Conclusions 

In the case of broad distributions of the values of the 
crystal thickness ( l , ) ,  amorphous thickness (Za), and the 
long period (L) ,  these parameters can be determined with 
higher accuracy from the interface distribution function 
than from the correlation function. The reason for this 
is that the interface distribution function is less affected 
by the superposition of the maxima or minima of a broad 
distribution than the relevant shape of the correlation 
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if LF > LtNe Y<(LtNe) > (23) 
Concerning the second state, one recognizes in the same 

(24) 

way that 

if LE > L,,, - Y ~ ’ ( L ~ ~ ~ , / ~ )  < 0 
and 

if L,“ < Ltrue * Yl’(Ltrue/2) > 0 (25) 
To demonstrate the above statements, we use the 

Y,”(X) = g1(x) (26) 

equation 

and obtain 

I I 
I I 

, I t4 - 
0.0 

Figure 17. Schematic representation ofthe interface distribution 
function and of the correlation function to illustrate the influence 
of the thickness distribution of the different regions on the first 
derivative of the correlation function (see text). 

function. The L values obtained by simply applying 
Bragg’s law are considerably larger than the true values. 
The distribution of the values of crystal thickness and 
long period is very broad. 

I t  is found that the crystalline fraction within the lamel- 
lar stacksxcL is considerably larger than the overall degree 
of crystallinity xc,  in agreement with earlier findings.15 
The value of XCL is almost independent of the time and 
temperature of crystallization and turns out to be ap- 
proximately equal to 0.7. 

The results obtained favor the view that the lamellar 
stacks consist of only 3-6 coherently scattering crystal 
lamellae and that there exist amorphous regions outside 
of the lamellar stacks which are larger than those within 
the lamellar stacks but still small enough to contribute to 
the detected diffuse small-angle X-ray scattering. The 
fraction of these regions, 1 - xc/xl, decreases with 
increasing temperature of crystallization. 

Acknowledgment. We express our thanks to the In- 
ternationales Buro, Kernforschunganlage, Kalsruhe, and 
to CSIC, Madrid, for the generous support of this 
cooperation project. Grateful acknowledgment is also due 
to CICYT, Spain, for the support of this investigation 
(Grant MAT88-0159). H.G.Z. thanks the Secretaria de 
Estado de Universidades e Investigacibn, Spain, for the 
award of the Humboldt-Mutis Prize by which this work 
was also supported. 

Appendix A: Theoretical Considerations 

In what follows we want to demonstrate that (1) the 
long period L r  derived from the first maximum of the 
correlation function is always larger than the true average 
value, Ltrue, and (2) the long period L,“ derived from the 
first minimum of the correlation function is smaller than 
Ltrue if a1 > 9 ,  where q is the variance of the distance li 
and 11 is the larger distance in the two-phase system. If a1 

< a2 then LE > Ltrue. 
To prove the above statement, we have to calculate the 

first derivative of the correlation function yl’(x) a t  x = 

Concerning the first statement, one can see from Figure 
Ltrue/2 and at x = &rue. 

17 that 

where rl’(0) < 0 and gl(u) is the sum of the distributions 
for 12, 11, L, and so on4p5 (Figure 17); i.e. 

gl(u) = -y1’(0)(h2(u) + h,(u) - 2hL(U) + ... + 
2nd order) (28) 

where hi(u) is the normalized Gaussian function with an 
average value equal to li and variance equal to ai. 

From eq 27 one can obtain 

Depending on the values of the individual variances we 
have three alternatives: 

1. If a1, u2, and OL are sufficiently small, then there is 
no superposition of the individual distributions, and from 
the shaded area of Figure 17 and from eq 29 one can deduce 
that ~l’(Ltme/2) = 0. Thus the correct value for the long 
period is obtained. 

2. If up > u1, then a part of the area which corresponds 
to the distribution of 12 is not taken into account in the 
integral of eq 29 and the tail of the 11 distribution is not 
so large as to compensate the loss of area from the 12 
distribution. In this case, more integrated area is lost than 
is gained. Therefore 

~ < ( L b ~ , / 2 )  = Y[(O) - krl’(O) < 0 (30) 
with 0 < k < 1. This means that using eq 24 one obtains 
a value for the long period, L,“ > Ltrue. 

3. If 6 2  < u1, more integrated area is gained than is lost. 
Therefore 

~ ~ ’ ( 0 )  = -Yl’(0)(k’ - 1) > 0 (31) 
with 0 < k‘ < 1. This means that using eq 25 one obtains 

One can follow the same procedure to obtain the value 
Lz  < Ltrue. 

-yl’(Ltme). This is given by 

This integral corresponds to the following contributions: 
(a) the whole area of the 12 distribution &e., -~1’(0)), (b) 
the whole area of the 11 distribution (i.e., -~1’(0)), (c) half 
the area of the L distribution, which represents +y1’(0) 
because it has double weight, and (d) the tail of the L + 
12 distribution, which represents -kyl’(O) and 0 < k < 1. 
Then one obtains for Y1’(Ltrue) 

Y1’(Ltrue) = Yl’(0) - Yl’(0) - 71’(0) + Yl’(0) - kY,’(O) = 
-ky{ (O)  > 0 (33) 

By using eq 23, it follows that LF > 
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Figure 18. Model calculations of the correlation function and 
the interface distribution function using different values for u,. 

Appendix B: Model Calculations 

We have calculated the correlation function and the 
interface distribution function for an ideal two-phase 
system with an average long period Lme = 7.1 nm and 
average thickness of phase 1 11 = 4.5 nm and of phase 2 
12 = 2.7 nm. The variances u1 and u2 for the respective 
distributions of 11 and Z2 were changed between 1 and 3 
nm. It was further assumed that UL = ul + 0 2 .  

As an example Figure 18 shows the correlation function 
and the interface distribution function for two different 
values of the variances. One can see that both the first 
minimum and the first maximum in the correlation 
function are very much affected by changing the values 
of the variances. The same shift occurs for the first 
minimum in the interface distribution function. The 
results obtained for L,", L r ,  LI, and LIS for the different 
values of the variance are presented in Figure 19. Figure 
19 (top) shows the values obtained by letting constant 62 
and varying 61, while Figure 19 (bottom) gives the values 
assuming u1 = constant and varying 62. The main 
conclusions in this case are as follows: 

(i) The value of the long period from the interface 
distribution function after doing the separation of the 
different contributions (LIS)  is always equal to the real 
value. LIS = Ltrue. 

(ii) The value for the long period from the first minimum 
of the interface distribution function (LI)  is always larger 
than the real value and is affected by the different values 
of the variances. LI > L,,,. 

(iii) The value for the long period from the first 
maximum of the correlation function (LF) is always larger 
than the real value and it is more affected by the different 
values of the variances than LI. LF > LI > Ltme. 

(iv) The value for the long period obtained from the 
first minimum of the correlation function ( L z )  is smaller 

a 7 5 4  /- I 

I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

6.04 ~ I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 19. Influence of the variances ul and u2 upon the values 
of the long periods LI,  LIS, LF, and LE obtained by different 
evaluation methods. 

than the real value if the variance of the larger thickness 
is larger than the variance for the smaller thickness and 
vice versa. L," < Lm, if u1> u2 and L t  > L-e if u1 < 62. 

(v) If the variances for the two thickness distributions 
(u1= up) are the same, then the long period obtained from 
the first minimum of the correlation function and the one 
obtained from the first minimum of the interface distri- 
bution function are nearly equal to the true value. L t  = 
LI = Ltrue when u1 = 62.  
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