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Complete SAXS data analysis and synthesis of lamellar two—phase
systems. Deduction of a simple model for the layer statistics.!
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A structural model for the analysis of SAXS data from lamellar two—phase systems is proposed and
applied to data sets from three injection moulded poly(ethylene terephthalate) (PET) samples. The con-
cept of data analysis is based on Ruland’s interface distribution function (IDF). The suggested model is
defined by few parameters of physical meaning. It unifies the well known concepts of an ensemble of
nonuniform stacks, finite stack height and one-dimensional paracrystalline disorder in an analysis ex-
pression. In order to deduce this expression, the notion of an inhomogeneous structure within the sample
is mathematical treated in terms of “compansion”, a general superposition principle. Its mathematical
equivalent in one dimension is the Mellin convolution. The theory of the Mellin convolution may be used
to find analysis functions even for the convoluted. An example is given, which in future work may be
used to describe the thickness distributions of amorphous and crystalline layers. In the application part of
this study Gaussians are used to describe the thickness distributions in each local stack. The introduction
of compansion adds one extra parameter, which describes the heterogeneity of the sample. Compansion
makes the global thickness distributions become more asymmetrical.

1 Introduction An advanced method for SAXS data evaluation is
Ruland’s method of “interface distribution func-
tion” (IDF) analysis [9]. The IDF ¢ (r) is an
image of the scattering intensity in physical space
which describes the structure of a lamellar system
by a series of distance distributions, h; (d;,r), with
d; the corresponding average distance between two
deliberate phase interfaces along the main axis of
the representative lamellar stack.

A frequently studied type of superstructure in poly-
mers is the lamellar two—phase system. Small—-
angle X-ray scattering is a common method of re-
search in this field, but it requires appropriate eval-
uation methods and structure modelling in order to
gain information on global parameters which char-
acterise the structure. Even the restricted objective
to only determine the “long period” from the re-
flection maxima is not a simple task, as Reinhold
et al. [1] have shown. In order to explain the curve,
the authors suggest a special type of asymmetric
function to describe the frequency distribution of

2 Theoretical

long periods. Asymmetric distributions have sev-
eral times been considered for two—phase systems
[2-5]. Other authors [6—8] conclude that the en-
semble of lamellar stacks shows inhomogeneity in
the sense that the long period varies from stack to
stack.
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If the structure of a sample is heterogeneous, i.e.
the structure of the lamellar stacks varies from re-
gion to region, it may be difficult to extract a model
structure (e.g. a 1D-paracrystal) from the scat-
tering curve. Nevertheless, to a first approxima-
tion, an average reference structure g1, (rr) may
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exist which, after only a compression or expan-
sion, fits the local stack. The author has named
this principle “compansion” [10]. Thus one intro-
duces a frequency distribution hg () of compres-
sion/expansion factors and finds
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Y
(1)
for the observed structure g; (r). Eq. 1 describes
the Mellin convolution [11,12]. With the definition
of the “4—th moment about origin” of a distribution

h(r),

o0 .
o= [ v hie) dr, B
0
hg (r) enjoys the properties
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i.e. norm and mean are equal to unity. Since g1, (r)
can be expanded into a series of distance distribu-
tions h; (r), the problem is reducible to the study
of the “Mellin convoluted” of functions satisfying
Eq. 3.

Consider Gaussian distributions, h(r,0), which
satisfy Eq. 3

h(r,o) =

and let f(r) := hg (r,om) ® hy (r,0,) be the
companded result. Then F (s), the Fourier trans-
form of f(r), can be written in analytical form
(cf. [10])
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Figure 1: Examples for the Mellin convoluted (1D-
companded) of two Gaussians as a function of the
width parameter o of one of the functions. (a)
the convoluted function f (r) in physical space.
(b) —2%R (F (s)), the negative Fourier transform of
f (r). Such terms occur in s* I (s).

Gaussians and their companded do not vanish for
r < 0. Following a method of Marichev [12],
one may find numerous different basic distribu-
tions, which overcome this drawback. Moreover,
their Mellin convoluted may be calculated analyti-
cally. A simple example is

a>2 (6)

h(a,r) = ¢ r*~lexp (—ar),

I (a)

F(s) =+v/A(s) exp(—A(s)B(s)) exp (2misA (s))
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with
1

As) = ———,
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B(s) = 2r° (03 +oy) s

Examples for these functions are shown in Fig. 1.
As one can see, a smooth transition from symmet-
rical to skewed distributions is the natural result of
increasing heterogeneity under compansion.

Its ¢—th moment about origin, x ,, (a), is a function
of the variable a

i, (@) = (7

(a),, is Pochhammer’s function. The standard de-
viation of h (a,r) is 0° = 1/a, its skewness y; =
2/+/a. With increasing a the distribution becomes
narrower and mor symmetrical (cf. Fig. 2).
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Figure 2: Sketch of exemplary model distributions
h(a,r) that vanish for » < 0 and the Mellin con-
volution of which is analytical.

For f (a,b,r) = h (a,r) ® h (b,r) one finds

(a+b)/2
2
Flr) = (ab) platb=2/2g (2 /_abr)
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with K, (z) being the modified Bessel function of
the second kind and order n.

3 Example evaluation and re-

sults

21104
. « not annealed
VE 0 T,=240C
£ s T,=248C
>
© 104
>
=
)
)

0.1 g [nm1] 0-2 0.3
Figure 3: Slit-smeared SAXS intensities .J (s) /V
of 3 injection moulded PET samples. The solid
lines show curves synthesised from the parameter
values gained from complete data analysis.

The measured SAXS curves J (s) /V from 3 in-
jection moulded PET samples are shown in Fig. 3.
Two of the samples have been annealed at different
temperatures. The solid lines show the curves that
have been synthesised from the parameter values
obtained in the model fits. The deviations at small
s—values are discussed elsewhere [10].
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The IDFs g; (r) that have been computed from
J (s) /V are shown in Fig. 4. For a detailed dis-
cussion of the evaluation steps cf. [10].
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Figure 4: Interface distributions g; () obtained
from J (s) /V.
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Figure 5: Model decomposition after fit of the sam-
ple annealed at 240 C. Two global distance distri-
butions are marked as h. (r) and —2hy, (r). The
model assumes compansion but no specific statisti-
cal model (like paracrystal statistics).

The model decomposition in Fig. 5 shows the
overlapping of the global distance distributions
hi (di,04,7) ® hg (g, 7) and the asymmetry due
to compansion in, e.g., the distribution of the long
periods —2hy, (r). The symmetry of some special
distributions (thin solid lines) led to the conclusion
that here the stacks have a finite height. So the
drawing only represents one intermediate step in
the model refining process. After considering com-
pansion, the increase of the widths o; with increas-
ing distance does no longer contradict a paracrys-
talline statistics.

Only for the un-annealed sample the stack height is
high enough to allow for a fit under the assumption
of infinite stack height.
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Figure 6: Two model fits for the un-annealed sam-
ple, assuming the statistical model of an infinite
paracrystal stack. In brackets: the residual sum of
squares of the fit.

Corresponding fits are shown in Fig. 6. It is ob-
vious that the assumption of compansion improves
the fit considerably: Only by introduction of one
additional model parameter the residual sum of
squares decreases by a factor of 31.

Table 1: Parameters of the structural model for 3
PET samples under consideration of sample het-
erogeneity (compansion). Ap is a weight parame-
ter, o is the heterogeneity of the sample, d. and
d, are the average thicknesses of crystalline and
amorphous layers. o./d. and 0,/d, are the rela-
tive standard deviations of the reference stack. n is
the number of crystalline layers in a finite stack.
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stacks may be superimposed. Compansion consid-
ers this superposition to a first approximation and
generates asymmetric frequency distributions in a
natural manner. As has been shown in an example,
the study of the properties of the Mellin convolu-
tion may yield interesting types of frequency distri-
butions that might be more suitable than Gaussians
for the analysis of SAXS from lamellar or fibrillar
two—phase systems.

For all the samples studied heterogeneity appears
to be an essential feature of the structure, and thus
has to be considered.
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