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ABSTRACT: A method for the quantitative analysis of two-dimensional (2D) small-angle
X-ray scattering (SAXS) patterns with fiber symmetry by successive information filter-
ing is proposed and applied to a series of images recorded during a straining experiment
of a two-phase polymer sample at a synchrotron beamline. The studied equatorial
scattering is similar to the frequently discussed void scattering, but originates from an
ensemble of rodlike soft domains (needles) in the sample, orientated in the direction of
strain. The intensity is extracted and projected onto the equatorial plane, the ideal
two-phase structure is extracted, and the 2D chord distribution is computed. This curve
describes a 2D two-phase morphology made from needle cross-sections embedded in
matrix material. Because interparticular correlation is found to be weak in the chord
distribution, pure particle scattering is assumed. Modeling the needle cross-sections by
circular disks leads to a simple theory, which allows the deconvolution of a disk
diameter distribution from the chord distribution. It is shown how parameters of the
disk diameter distribution can be computed without deconvolution. For the selected
poly(ether ester) thermoplastic elastomer the study of the soft domain needles indicates
strain-induced hardening. While for low elongation e the soft needles are more com-
pressible than the microfibrillar matrix, saturation is observed for e . 2.5. © 1999 John
Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 975–981, 1999
Keywords: equatorial small-angle X-ray scattering; domain diameter distribution;
drawing; thermoplastic elastomers; poly(ether ester)

INTRODUCTION

Two-phase polymers with preferred orientation
frequently exhibit small-angle X-ray scattering
(SAXS) patterns with fiber symmetry, which can
be recorded at a synchrotron beam line with high
accuracy. Quite often one observes patterns with
many reflections, which vary considerably as a
function of tunable parameters.1–4 After a quali-
tative description of the observations and a semi-
quantitative analysis of reflection positions as a
function of the parameter values, a quantitative
analysis of the image series should afford pro-
found insight into structure. The objective of the
present study is the extraction of the diameter

distribution describing an ensemble of oriented
rod-like domains in strained material, similar to
the notion of a “hard disk fluid,” developed by
Cohen and Thomas.5 In contrast to this study and
an article of Porod,6 here the data are interpreted
in real space and interparticular correlation is
neglected.

At first sight the analysis of a two-dimensional
(2D) pattern appears to be cumbersome because of
the wealth of data. But for a 2D image there do exist
several methods to filter out specific information.
Curves gained by such a procedure only reflect cer-
tain aspects of the morphology, and thus hopefully
can be described by a simple structural model.

The first steps towards this goal have been
undertaken by Bonart.1 Based upon the mathe-
matical relation between structure and scatter-
ing, he has proposed the analysis of projections,
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which can be extracted from the scattering pat-
terns and reflect a longitudinal and a transverse
structure, respectively. The present study deals
with projections onto the equatorial plane only
(transverse structure). Following a concept of
Ruland7,8 the resulting curves are not fitted by a
complex model, but analyzed step by step in order
to “peel off” information. Finally, a chord distri-
bution9–11 is computed. Only now, based upon the
observed properties of the chord distribution, an
adapted model is chosen. Because this model is
simple, the structural parameters can be com-
puted directly from the chord distribution without
the need to fit the data. The proposed method may
especially be useful in cases where the lateral
extension of domains is expected to be correlated
with material properties, as in the case of semi-
crystalline fibers, thermoplastic elastomers, or
smectic liquid crystalline polymers.

Several other authors are presently working in
the field of fiber pattern analysis. The group of
Wilke proposes a paracrystalline macrolattice
model and fits selected cuts of the pattern simul-
taneously to the model.12–14 Asherov et al.15

model the scattering pattern based on an ideal
paracrystalline model. Murthy et al.16,17 propose
the choice of model functions in elliptical cylindri-
cal coordinates to extract features from the pat-
tern. Thus, in addition to the longitudinal and
transverse structure, they determine the orienta-
tion distribution of the scattering entities.

THEORETICAL

Definitions

Let I(sW)/V be the measurable SAXS intensity,
normalized with respect to the irradiated volume,
V. Let the magnitude of the scattering vector be
defined by usW u 5 (2/l)sin u, with l being the wave-
length of radiation, and 2u the scattering angle.
For the ease of notation and because treatment of
absolute intensities is not intended here, let us
write I(sW) for the normalized intensity.

In the case of a scattering pattern with fiber
symmetry, it is convenient to write I(sW) 5 I(s12, s3) in
cylindrical coordinates, with s12 5 =s1

2 1 s2
2 and the

component s3 defining the symmetry axis of the
pattern. If in the case of fiber symmetry, the tan-
gent plane approximation is assumed to be valid;
the complete information of SAXS is in a two-di-
mensional (2D) pattern, which can be recorded us-
ing a 2D detector.

Pattern Filtering: Equatorial Scattering

Such 2D patterns may exhibit many reflections,
which may vary considerably as a function of
tunable parameters. If the pattern reveals equa-
torial scattering, the equatorial streak may be
extracted from the pattern and analyzed sepa-
rately. In certain cases (if the streak is clearly
separated from other reflections and does not “fan
out”18) it should suffice to mask the measured
pattern

In~s12, s3! 5 I~s12, s3!Yb~s3! (1)

to extract a “needle scattering,” In(s12, s3), in
particular, if this pattern shall only be inter-
preted after projecting it. Yb(s3) is a shape func-
tion, which gives a value of 1 for us3u , b/ 2 and
vanishes elsewhere. Thus, b is the height of the
equatorial band.

In addition to the study of the needle scatter-
ing, it may be interesting to study its comple-
ment,

In#~s12, s3! 5 I~s12, s3! ~1 2 Yb~s3!!, (2)

if distinct reflections are observed in the direction
of strain. Thus, the cross-sections of microfibrils
and layer stacks can be studied as well.

When dealing with the equatorial streak of a
fiber pattern, it appears suitable to extract what
Bonart called “Querstruktur” (transverse struc-
ture)1 by computing the projection

$I%2~s12! 5 2 E
0

`

In~s12, s3! ds3. (3)

{I}2(s12) is defined in the s12-plane normal to the
fiber axis. Through Fourier transformation rela-
tion it is linked to a two-dimensional two-phase
system made from needle cross-sections in a ma-
trix, as indicated in Figure 1. More precisely,

^2~$I%2~s12!! 5 Qg2~x12!, (4)

the 2D Fourier transformation, ^2(), of the pro-
jected intensity is the product from the invariant
Q, and the 2D section of the correlation function g
in the equatorial plane. The intention of this work
is the analysis of the 2D chord distribution,
g2( x12),
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g2~x12! 5 f
d2g2~x12!

dx12
2 , (5)

which is proportional to the second derivative of
g2( x12).

Porod’s Law and Systematic Deviations

{I}2(s12) is generated by a projection process iden-
tical to that carried out by a Kratky camera. In
particular {I}2(s12) exhibits Porod’s law with the
scattering falling off with s12

23. Small deviations
from the predicted falloff are accounted to the
nonideal structure of the real two-phase sys-
tem7,19 and corrected accordingly, leading to the
2D interference function G2(s12) of an ideal two-
phase system

G2~s12! 5 ~$I%2~s12! 2 IFl!s12
3 /

3 expS2
4
9p2wt

2s12
2 D 2 AP2. (6)

AP2
, Porod’s asymptote of the projected SAXS in-

tensity, is the constant governing Porod’s law.
The nonideal structure of the real two-phase sys-
tem is described by IFl and wt. Fluctuations of the
electron density are considered by IFl, the density
fluctuation background, which from practical rea-
son is assumed to be a constant. wt is the width of
the transition zone at the domain boundary, in
which the density changes smoothly. A detailed
description of the procedure established to deter-
mine the interference function has been described
elsewhere.19

Chord Distribution Analysis

General

Using eqs. (4), (5), (6), and a chosen normalization
*0

` g2( x12) dx12 5 AP2
, one finds that the 2D

chord distribution11,20,21 g2( x12) is computed
from G2(s12) by

g2~x12! 5 p E
0

`

~J0~2px12s12!

2 J2~2px12s12!!G2~s12! ds12. (7)

Here J0 and J2 indicate Bessel functions of the
first kind. In general, g2( x12) shows the distribu-
tion of chords from needle and matrix cross-sec-
tions and their correlations in the plane normal to
the fiber direction.

No Correlations

In particular, if g2( x12) is positive everywhere,
the correlations among the “disks in the plane”
are negligible and g2( x12) represents the chord
distribution of an ensemble of uncorrelated disks
in the ( x1, x2)-plane (cf. Fig. 1).

Simplification by Circles

Let the cross-section of every needle be modeled
by a circular disk, then the properties of a needle
diameter distribution, hD(D), are of physical in-
terest. In the absence of correlations among the
disk positions the observed chord distribution,
g2( x12), can be written in terms of hD(D) and the
intrinsic chord distribution gc( x12) of a disk with
unit diameter. Then

g2~x12! 5 E
0

`

hD~D!gcSx12

D D dD
D (8)

is simply the superposition of compressed and
expanded images from gc weighted by the value of
the diameter distribution, hD(D), which shall be
studied. Equation (8) is the definition of the Mel-
lin convolution.8,22

Chord Distribution of a Circle

The chord distribution of a disk with unit diame-
ter can be computed following a proposal by Po-
rod,10 and has been carried out by Schmidt.11 The
result is

Figure 1. Sketch of the two-dimensional fiber cross-
section structure, whose chord distribution is related to
the projection according to eq. (3).
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gc~x! 5
x

Î1 2 x2 , for 0 , x , 1. (9)

For the reason of convenient arithmetics and
numerical inversion of eq. (8), gc( x) is chosen to
satisfy the condition *0

1 gc( x) dx 5 1.

Numerical Inversion

hD(D) can be computed by numerical inversion of
eq. (8) utilizing an iterative van Cittert algorithm
similar to that proposed for the conventional de-
convolution by Glatter.23 The algorithm is found
to converge as long as g2( x12) is positive every-
where. Thus, the needle diameter distribution
can be computed from a measured 2D chord dis-
tribution.

Moments of a Distribution

Generally, parameters of physical interest are
closely related to moments of a studied distribu-
tion. m9i( g), the ith moment about origin of a
distribution g, is defined by

m9i~g! 5 E
0

`

xig~x! dx, (10)

and this definition is almost identical to the def-
inition of Mellin transformation of a function
g( x), which is a function of the variable t

}$g~x!, t% 5 E
0

`

xt21g~x! dx. (11)

For example, the interesting average needle
diameter, D# , can be expressed in terms of mo-
ments with respect to the disk diameter distribu-
tion, hD,

D# 5
m91~hD!

m90~hD!
. (12)

With respect to the normalized disk diameter
distribution h*D(D) 5 hD(D)/m90(hD), D# is simply
the first moment about origin, and a common
measure for the width of the diameter distribu-
tion is its variance, sD

sD 5 m2~h*D! 5 E
0

`

~D 2 D# !2h*D~D! dD, (13)

the second central moment of h*D.

Taking Advantage of the Mellin Convolution

There is no need to invert eq. (8) before computing
values for such structural parameters, which can
be expressed in terms of moments m9i(hD), be-
cause for any set of functions related by eq. (8) the
theorem

m9i~g2! 5 m9i~hD!m9i~gc! ; i (14)

is valid.8 Thus, any moment of hD can be com-
puted from the corresponding moment of g2. After
solving eq. (14) for m9i(hD), one computes the se-
ries m9i( gc) for i 5 0, 1, 2, . . . from } { gc, t}, the
Mellin transformed of gc as a function of a vari-
able t

}$gc, t% 5
1

Îp

GS t 1 1
2 D

GS t 1 2
2 D , (15)

taken at t 5 1, 2, 3, . . . . G indicates the Gamma
function. The moments m9i( g2) of the measured
chord distribution are computed by numerical in-
tegration. Central moments mi(hD) can be com-
puted from moments about origin as stated else-
where.8,24

Total Needle Cross-Section per Fiber Cross-Section

If the scattering has been normalized to constant
irradiated volume, and if the density contrast be-
tween particle (“needle”) and matrix does not
change during the experiment, the second mo-
ment about origin, m92(hD), of the disk diameter
distribution

m92~hD! 5 E
0

`

D2hD~D! dD (16)

is proportional to the total cross-section of needles
per fiber cross-section, and may be studied as a
function of tunable parameters.

MATERIALS AND EXPERIMENTS

The commercial poly(ether ester) (PEE) Arnitel
E2000/60 (manufactured by DSM, The Nether-
lands) has been studied. The material is a
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multiblock copolymer containing hard segment
blocks from poly(butylene terephthalate) (PBT)
and soft segment blocks from poly(tetrahydrofu-
ran) (PTHF). As a result of phase separation a
two-phase system from hard domains and soft
domains is formed. With respect to material prop-
erties PEEs are thermoplastic elastomers. When
strained beyond 50%, the process becomes irre-
versible.25 The relation between irreversible elon-
gation and the materials two-phase structure is
supposed to be elucidated by means of a quanti-
tative analysis of the SAXS patterns recorded
during a straining experiment.

A film with a thickness of 400 mm has been
strained continuously in the synchrotron beam at
beamline A2 (HASYLAB, Hamburg). Image plate
detector has been positioned 1.8 m behind the
sample and exposed for 1 min, typically to obtain
maximum accumulated count readings of approx-
imately 60,000. The chosen semitransparent
beam stop ensures a low background scattering at
the expense of a relatively large blind area in the
center of the pattern.

Data analysis has been carried out using pub-
lished computer programs,26 which are freely
available.27

DATA ANALYSIS AND RESULTS

Observations and Semiquantitative Analysis

Principal observations and peak shifts are shown
in Figure 2. During straining a two-point diagram
(long period L3,1) is observed. At an elongation e

5 1.3 a second peak (L3,2) emerges, the first peak
vanishes behind the primary beam stop, and “nee-
dle scattering” (L3,n) emerges at the equator.
This observation can be explained by Peterlin’s
microfibrillar model.3 At low elongation microfi-
brils from hard and soft domains cause the two-
point pattern, while during the progress of elon-
gation hard domains are unravelled, causing the
formation of high, needle-shaped soft domains
that scatter about the equator.

Projections and the Transverse Structure

According to eqs. (1) and (3) projections {I}2(s12)
of the scattered intensity have been computed
from all the patterns, which show the equatorial
streak. The height b(e) of the evaluated equato-
rial band as a function of the elongation e was
determined from the intensity minimum in s3-
direction between the equatorial streak and the
off-equatorial scattering [b(1.7) 5 46, b(2.1)
5 42, and b(e . 2.1) 5 40 pixels. Pixel height
1.19 1023/nm].

The projections extracted from the images in
the series are presented in Figure 3. The curves
show a distinct Porod region, in which the scat-
tering falls off with s12

23. Small deviations are
accounted to the nonideal structure of the real
two-phase system and corrected according to eq.
(6), leading to 2D interference functions G2(s12)
of an ideal two-phase system.

From the interference functions the 2D chord
distributions g2( x12) (cf. Fig. 4) have been com-
puted following eq. (7).

In general, g2( x12) shows the distribution of
chords from needle and matrix cross-sections, and
their correlations in the plane normal to straining

Figure 3. Projections {I}2(s12) of the equatorial scat-
tering onto the plane normal to the straining direction
as extracted from small-angle X-ray scattering pat-
terns of a poly(ether ester) as a function of elongation e.

Figure 2. Principle SAXS pattern and peak shifts
observed during the straining of a PEE sample. L3,1

and L3,2 are long periods, while L3,n is the reciprocal
height of the form factor envelope from an ensemble of
needle-shaped particles causing the equatorial scatter-
ing.
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direction. Experimentally, only a single positive
peak from uncorrelated disks is observed, indicat-
ing that in this physical space representation the
correlations among the soft domain cross-sections
appear to be negligible. Thus, the simplified eval-
uation method deduced in the Chord Distribution
Analysis section can be applied.

Figure 5 shows the diameter distributions,
hD(D), of needle-shaped soft domains in a poly-
(ether ester) as a function of elongation, e. The
functions have been computed by the numerical
Mellin deconvolution algorithm, which has been
described in the Chord Distribution Analysis sec-
tion.

Values of structural parameters, which charac-
terize the ensemble of needle-shaped soft do-
mains in the poly(ether ester) sample, have been
determined directly from g2( x12), as has been
deduced in the theoretical section. The results are
shown in Figure 6. D# (open circles) is the average
needle diameter as a function of elongation, and
s/D# (filled circles) is the relative width of the
needle diameter distribution. The curve marked
by squares is m92(hD)(e), the second moment
about origin of the needle diameter distribution
as a function of elongation e. The values have
been computed according to eq. (16).

DISCUSSION

From Figure 6 it is obvious that the mean diameter
of the needle-shaped domains decreases almost lin-

Figure 4. 2D chord distributions g2( x12) of a poly-
(ether ester) as a function of elongation e, computed
from the projected equatorial small-angle X-ray scat-
tering {I}2(s12).

Figure 5. Soft domain needle diameter distributions,
hD(D), of a poly(ether ester) as a function of elongation,
e, computed by numerical Mellin deconvolution from
the g2( x12) curves shown in Figure 4. Wiggles close to
the curve ends are artifacts.

Figure 6. Characterization of the ensemble of needle-
shaped soft domains in a poly(ether ester) as a function
of elongation, e. D# (open circles) is the average needle
diameter, and s/D# (filled circles) is the relative width of
the needle diameter distribution. The curve in the mid-
dle has been computed by means of eq. (16).
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early with increasing elongation, while for rubber
elastic behavior, one would have expected a de-
crease according to D# (e) 5 D# 0/=e 1 1. As shown in
Figure 5, the reason is that the disk diameter dis-
tribution alters its shape. With increasing elonga-
tion more and more thin needles are emerging,
which cause the average diameter to decrease con-
siderably. Now, when extrapolating linearly to-
wards e 5 0, one finds a hypothetic average initial
diameter D# 0 5 4.8 nm of the soft domain needles.
s/D# (e), the relative width parameter of the disk
diameter distribution, hardly increases.

The values of m92(hD)(e), which are proportional to
the total needle cross-section per fiber cross-section,
are constant only for elongations e . 2.5. On the
other hand, in the observable region of elongations
1.7 , e , 2.5 a considerable decrease is observed.
This decrease indicates a strain-hardening process
of the soft needles: during straining, the soft mate-
rial of the needles is compressed in transverse di-
rection with respect to the surrounding matrix ma-
terial. An increase of the needle density during this
process amplifies the observed effect. The measured
values could be compared with measurements of
Young’s modulus, and stress-induced polymorphic
transitions28 could be discussed in conjunction with
the presented result. To describe the shape of the
disk diameter distribution more accurately by
means of moments, one could proceed in the series
and compute the skewness g 5 m3(hD)/sD

3 of the
distribution and study it as a function of elonga-
tion.24

In general, this work indicates that for a mor-
phology that is both dominated by correlation and
disorder, a direct analysis of the scattering pattern
puts the focus on the study of long-range correla-
tion. In an analysis of the chord distribution in
physical space, on the other hand, the emphasis
falls on the structures short-range disorder.

This investigation has been supported by HASYLAB
Hamburg under project I-97-06. The study of the ma-
terial was kindly suggested by Professor Kricheldorf,
University of Hamburg. Sample material was supplied
by courtesy of the DSM Corp., The Netherlands.
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