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ABSTRACT: A method for the quantitative analysis of two-dimensional small-angle X-ray scattering
(SAXS) patterns with fiber symmetry is proposed and applied to a series of images recorded during
straining and relaxation cycles of a two-phase polymer sample at a synchrotron beamline.The studied
longitudinal scattering originates from microfibrils or lamellar stacks built from alternating soft and
hard domains. The scattering intensity of the patterns is projected onto the direction of strain, yielding
one-dimensional scattering curves. From these curves, interface distribution functions are computed and
analyzed using an advanced stacking model with a small set of parameters. Not only the average domain
heights but also four parameters characterizing each of two height distributions (hard and soft domains)
are determined as a function of elongation. These parameters are norm, mean, variance, and skewness.
They describe the response of the filled elastic network to strain.For the studied poly(ester ether)
thermoplastic elastomer, the quantitative analysis shows that two microfibrillar components (an intact
and a damaged one) can be identified in the patterns from samples at medium elongation as well as in
patterns recorded during relaxation from medium elongation. Although the scattering patterns differ
considerably, the hard domain distributions extracted from the fits are identical. The difference between
elongated and relaxed state is in the distribution of the soft domain heights. There are indications for a
nonuniform elasticity of the soft domains. The average internal strain of the soft domains can be computed
and compared to the external strain; and pull out of tie molecules taut among different microfibrils can

be studied.

1. Introduction

Structural changes on a nanometer scale, which take
place in semicrystalline or other two-phase polymer
materials during fiber spinning or straining can only
be studied by those few methods which are minimally
invasive with respect to materials processing. One of
these methods is small-angle X-ray scattering (SAXS).
By utilizing a powerful source (synchrotron beam) and
a high-resolution two-dimensional detector, it is possible
to record a series of detailed scattering patterns with
high accuracy during short exposure times. Quite often,
one observes fiber patterns with many reflections, which
vary considerably as a function of tunable processing
parameters.—4

Even from two-dimensional (2D) patterns, the maxi-
mum accumulated counts of which range in the thou-
sands, one can extract structural information by simply
studying peak positions and other general features of
the scattering patterns as a function of processing
parameters. If, moreover, the number of accumulated
counts per pixel exceeds 10 000, it becomes both a
challenging and promising task to perform a quantita-
tive analysis of the patterns by successive information
extraction and late modeling. As a result of this proce-
dure, one will gain information not only on long periods
but also on domain sizes and domain size distributions.
For a strained poly(ether ester) thermoplastic elastomer
this means, e.g., that we should be able to extract the
distributions of hard- and soft-domain heights as a
function of elongation.
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To simplify the task, we will fall back on Bonart'st
proposal to split the information content of a fiber
pattern into a longitudinal structure and a transverse
structure, each of which is represented by a different
projection of the fiber pattern. These projections are
curves generated by certain integrals of the measured
patterns and carefully chosen to represent different
aspects of the 3D structure.

A demonstration of the quantitative analysis of a
transverse structure from a straining series has been
given elsewhere.®> Here, we focus on the quantitative
analysis of a longitudinal structure from a sample
series, the qualitative analysis of which has already
been published previously.®

The present study deals with projections onto the
straining direction (longitudinal structure). Following
a concept of Ruland,”® the resulting curves are not fitted
by a complex model but are analyzed step by step in
order to “peel off” information. Finally, an interface
distribution function (IDF)°10 is computed and analyzed
utilizing a model which has been proposed earlier? and
merges the well-known one-dimensional (1D) stacking
model'? and the model of homogeneous long period
distributions.10.12.13

Although the proposed evaluation procedure is ap-
plicable in general, it may be inadequate if the effect of
an orientation distribution becomes apparent in the
scattering pattern. In this case, one should first try to
determine the orientation distribution of the microfibril-
lar or lamellar stacks, as has been proposed by Murthy
et al.1415 After that, one should be able to eliminate the
effect of the orientation distribution in the scattering
pattern utilizing a method proposed by Ruland.1® Fi-
nally, the resulting pattern may be analyzed by the
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method proposed here.

In many papers, intensity cuts are analyzed. On the
basis of basic scattering theory, it is readily established
that such sections are related to a projected correlation
function in real space. This means that any analysis
based on intensity cuts is done under the premise that
it makes sense to integrate (e.g., to smear) the structural
information over planes perpendicular to the chosen
direction of the cut. On the other hand, intensity
projection analysis is frequently disliked for practical
reasons. The argument put forward says that it is
possible to have two- and four-point patterns which
result in the same intensity distribution when projected
along the fiber axis. This objection is not well-founded,
because it is based on the erroneous implication that
projection analysis would claim to fully characterize
oriented structures. By contrast, intensity projection
analysis studies intersections of the correlation function,
and if two structures result in the same projected
intensity, they do share the same intersection of their
correlation functions in the fiber direction. It is just this
structural aspect, which describes the correlations
among the domains taken in the fiber direction, that to
us is generally the most important feature of fiber
structure to be related to materials performance. There-
fore, we propose this analysis.

Another objection put forward is related to the
description of the structure by parameters which con-
sider an imperfection of the polymer domain structure.
It is believed that parameters other than the average
long period and domain heights could be chosen arbi-
trarily. We do not claim that there is no other structural
model which might be able to fit the SAXS data.
However, we claim that it is impossible to fit scattering
data from polymers with a model that is based on well-
defined domain heights only. An attempt to fit polymer
structural data by a perfect lattice has never been
successful, although interpretation of scattering data in
terms of such simplified notion is ubiquitous. So, when
searching for a model to fit scattering data, we recall
the well-known fact that polymer structures are imper-
fect in general, and so we choose the obvious minimum
parameter set. To date, we have gained methods and
computing power which enable us to give special
emphasis to imperfection in analysis. So if we are
willing to undergo the effort, we no longer need to carry
out SAXS analysis of polymers by zero-order approxi-
mations which are valid for well-ordered systems only.
The well-informed reader might want to find compari-
son with the correlation function analysis method
proposed by Vonk.118 Correlation functions computed
from the studied scattering patterns lack the specific
features which must be observed in order to carry out
the Vonk analysis. However, for different material, such
comparison has been undertaken and published previ-
ously?® with the finding that average domain heights
coincide in the case of narrow domain height distribu-
tions. As soon as the domain height distributions grow
broad, the correlation function becomes nonspecific and
needs biased interpretation. Correlation functions from
the studied poly(ether ester) sample neither exhibit a
region of constant slope nor a clear floor level. According
to private communication,?° this is a general problem
with poly(ether ester) material.

2. Theoretical Section

2.1 Definitions. Let I(S)/V be the measurable SAXS
intensity, normalized with respect to the irradiated
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Figure 1. SAXS fiber pattern of an elongated PEE sample.
Fiber axis is in sz direction. Vertical lines indicate the
integration paths which generate the transverse projection
studied in a previous paper. Horizontal disks indicate the
integration planes which generate the longitudinal projection,
{1}1(s3), studied here.

volume, V. Let the magnitude of the scattering vector
be defined by [S| = (2/4) sin 6, with 1 being the
wavelength of radiation and 26 the scattering angle. For
the ease of notation and because the treatment of
absolute intensities is not intended here, let us write
1(S) for the normalized intensity.

In the case of a scattering pattern with fiber sym-
metry, it is convenient to write I(S) = I(S12,83) in

cylindrical coordinates, with s;; = 4/si+s; and the
component s defining the symmetry axis of the pattern.
If in the case of fiber symmetry the tangent plane
approximation is assumed to be valid, the complete
information of SAXS is in a 2D pattern, which can be
recorded using a 2D detector.

2.2. Longitudinal Structure. Such small-angle fiber
patterns may exhibit many reflections, and a modeling
of the 2D pattern as a whole is expected to become
cumbersome and prone to errors.

When dealing with fiber patterns in which orientation
distributions do not play a predominant role, it appears
suitable to extract what Bonart called “Langsstruktur”
(longitudinal structure)! by computing the projection

{1}a(sg) =27 j(‘)m $121(S12:85) dsy, 1)

In Figure 1, several horizontal disks indicate planes
of integration placed at different values of s3. { 1}1(S3) is
a one-dimensional scattering intensity which is related
to the section [p[4(xs) of the correlation function y(X) in
X3 direction. Thus, it contains the information on only
those chords passing the two-phase system in the
direction parallel to the fiber axis, x3. In Figure 2, we
may represent such a chord by a deliberate vertical line.
Traveling along such a line we will alternately move
through the hard domain phase and the soft domain
phase, from time to time crossing a phase boundary.
Thus, structural parameters of physical interest are d,
the average travel distance inside the hard domain
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Figure 2. Sketch of a structure from hard- and soft domains
oriented parallel to a fiber axis. {1}1(s3), the projected curve
extracted from the SAXS fiber pattern, is only sensitive to
phase changes occurring when traveling in “vertical” direction.

phase, ds, the average travel distance inside the soft
domain phase, and the variances (0, and os) of their
distributions, which shall be called domain height
distributions hp(x3) and hg(x3s).

To return to the relation between projection {1} 1(s3)
and structure, more precisely,

F ({1}1(s3)) = Q{y}1(x3) 2

the 1D Fourier transformation, F, of the projected
intensity is the product from the invariant Q and the
1D section of the correlation function vy in the direction
of the fiber axis. The intention of this work is the
analysis of the 1D chord distribution, gi(xs),

d* (%)
2

3

9i(xg) = f ®3)

which is proportional to the second derivative of
[y (x3). This function has been introduced by Ruland®2!
and named the “interface distribution function” (IDF).

2.3. Porod’'s Law and Systematic Deviations.
Because { 1}1(s3) describes a one-dimensional structure,
similar to a “Lorentz corrected” curve from an isotropic
pattern, it exhibits Porod's law with the scattering
falling off with s;z. Small deviations from the pre-
dicted falloff are attributed to the nonideal structure of
the real two-phase system”?2 and corrected accordingly,
leading to the 1D interference function G4(s3) of an ideal
two-phase system

({1}a(sy) — 1e)s;

Gy(sy) = o "4 22
p 9‘7[ WtSS

P, (4)

Ap,, Porod's asymptote of the projected SAXS inten-
sity, is the constant governing Porod’s law. The nonideal
structure of the real two-phase system is described by
Ir and we. Fluctuations of the electron density are
considered by I, the density fluctuation background,
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which for practical reasons is assumed to be a constant.
w; is the width of the transition zone at the domain
boundary, in which the density changes smoothly. A
detailed description of the procedure established to
determine the interference function follows in Data
Evaluation.

2.4. IDF Analysis. Basic Relation. Using eqs 2—4 and
the normalization /% gi(Xs) dxs = Ap,, one finds that
the IDF g;(x3) is computed from G;(x3) by a negative
Fourier transformation

91(xg) = —2 f(.,mel(ss) €0S(27185%3) S, (5)

As Ruland has shown,® g;(x3) represents the distribu-
tions of chords from soft and hard domain phase and
their correlations by an infinite series of distance
distributions hj(xs). This series starts with the two
domain height distributions hp(x3) and hg(xs).

Choice of a Model. Assuming one-dimensional stack-
ing statistics as defined by J. J. Hermans,!! the IDF can
be constructed from only hn(xs) and hs(xs). As has first
been pointed out by Bramer,23 stacking statistics over-
comes the shortcoming of the one-dimensional paracrys-
talline model in which, for the case of considerable
disorder, some adjacent motif domains penetrate each
other. The second model frequently applied in order to
fit one-dimensional statistics is that of a “homogeneous
long period” (hL) distribution.1012.13 Here it is assumed
that the structure is made from an ensemble of grains
and every grain is of considerable size. Inside each
grain, there is a perfect one-dimensional lattice, and
only the lattice constant varies from grain to grain as
defined by a heterogeneity distribution, hy(xs). Its only
parameter is its variance, oy, if Gaussian statistics is
assumed. Both models have been merged by one of us.®
It is found that the main effect of a o4 > 0 is that the
distributions hp(x3) and hg(x3) become asymmetric. Thus,
we end up with a simple model with only six parameters
based on Gaussian statistics, which may be interpreted
in terms of either the two basic models (stacking and
hL) or the asymmetric domain height distributions
hn(xs) and hg(x3). The parameters of such a model are
the area under both of the distributions, W ~ Ap,/2; the
average domain heights of the hard and the soft domain
phase, respectively, dn and ds; the relative variances of
the domain height distributions, on/dn and os/ds; and the
heterogeneity or skewing parameter, oy.

Considering our earlier study on the same set of data,®
we expect that several of the data sets must be fitted
using a model, which allows for the consideration of the
presence of two components (taut and slack microfibrils).

Data Set To Be Fitted. The mathematical relation
between the projected intensity {1}1(s3) and the IDF g;-
(x3) is a simple one. Therefore, the model can easily be
adapted to fit either {1}1(s3), the interference function
Gi(xs), or the IDF gi(x3).

3. Experimental Section

3.1. Sample Preparation and Pretreatment. The inves-
tigated material is a thermoplastic elastomer of multiblock
poly(ether ester) (PEE) type. It is composed from poly(butylene
terephthalate) (PBT) hard segment blocks and poly(ethylene
glycol) (PEG) soft segment blocks. The latter have an average
molecular weight of 1000 and a polydispersity of 1.3, as found
by gel permeation chromatography. Such PEEs with a hard-
to-soft ratio of 57/43 wt % was prepared by polycondensation.

By melt extrusion, isotropic bristles with a diameter of 2
mm were obtained, which after cooling to ambient temperature
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were predrawn to 5 times their initial length. Finally stretched
bristles with fixed ends were annealed for 6 h at 170 °C to
obtain the anisotropic sample material for the X-ray scattering
study.

Extended information on the sample preparation can be
found in previously published work.®

3.2. Small-Angle X-ray Scattering Measurements. Syn-
chrotron radiation (wavelength 0.154 nm) from the beamline
A2 of the Hamburg Synchrotron Radiation Laboratory (HA-
SYLAB) at DESY in Hamburg was applied. The distance
between sample and detector was set to 2075 mm. Two-
dimensional scattering patterns were registered on image
plates. Exposure time was 2 min. From exposed image plates,
an area of 900 x 900 pixels, each with a size of 176 um x 176
um, was read out on a Molecular Dynamics image plate
scanner and used for evaluation. Valid scattering data were
recorded in a circular region of reciprocal plane with a radius
of sy = 0.25 nm™.

A bristle was fixed in a straining stage with an initial free
length between the clamps of 40 mm. Marks were painted on
to the bristle in intervals of 5 mm. The strain rate was 30 mm/
min. After the gap between the clamps was increased by 16
mm, the stage was stopped, and the scattering in the elongated
state was recorded. Bristle thickness and distances between
marks were measured during the changing of the image plate.
Immediately after that, the movement direction of the stage
was reversed, and the recording of a pattern “during relax-
ation” was started. We even tried to measure the relaxation
of the structure by accumulating for 20 s only and taking a
picture every minute, but we did not find observable differ-
ences among the four pictures taken, although the macroscopic
shrinking process was still going on. After the image plate was
changed, the next cycle was started, in which the final gap
between the clamps was increased by another 16 mm. Empty
scattering of the setup itself was recorded before and after the
experimental series for later correction of the sample scatter-
ing.

Primary beam intensity was monitored during the experi-
ment, and the absorption of the sample was measured using
an ionization chamber mounted in the beam stop. Because of
the uncertainty of the latter, we used instead the diameter of
the bristle for normalization to a constant irradiated volume
and represented the sample by a cylinder of constant height
and measured diameter. This procedure is allowed because of
the oblong shape of the primary beam, which intersects the
fiber at right angles. Finally, all of the measured data were
normalized to constant primary beam intensity and to constant
irradiated volume. Empty scattering was subtracted after
weighting by the sample absorption. Elongation

-1

€

(6)

lo

was computed from gaps between those marks which were
enclosing the irradiated volume of the sample.

4. Data Evaluation

4.1. SAXS Data Processing. With respect to the procedure
used in the earlier study,® data evaluation has been rewritten
and extended,?*?> now utilizing the powerful image processing
library which come with the commercial scientific program-
ming tool Pv-wave.?® With minor modification, most of the
procedures should run under IDL as well. IDL is closely related
to Pv-wave. Sources and description are freely available on the
web.?> Because of the lack of information concerning the
storage format used by the image plate scanner, at first we
did not decompress the stored numbers by squaring them. This
shortcoming led to strange results in a first, unpublished
approach toward a quantitative analysis and is inherent to
all data presented in the qualitative paper.® Fortunately,
because we have only interpreted peak positions since then,
it does not affect the results published earlier but only the
shape of the curves presented in Figure 2 of that paper.

Analysis of Fiber Patterns 3371

T

= o
T

Figure 3. Extrapolation of an apron (smooth surface) to the
measured SAXS intensity of the PEE sample elongated at ¢ =
1.1

Every sample pattern and empty pattern was properly
decompressed, aligned, and normalized before further process-
ing. Then, the empty pattern background was subtracted.
Blind areas on the detector were identified utilizing a dis-
criminating mask. After that, those regions were enlarged
along their edges using the “erode” operator well-known in
image processing. Now part of the missing data could be filled
from the recorded data using the inherent symmetry of fiber
patterns.

Finally, in the image, there remain a central blind spot and
an outer dark area. In an ideal scattering pattern, both areas
can be minimized by choosing a small beam stop, a relatively
short sample-to-detector distance, and a wide vacuum tube.
Bearing in mind a quantitative analysis of the scattering
pattern, the necessity of having data from a wide area in the
reciprocal plane arises from the fact that integrals have to be
computed, and these must be extended virtually to infinity.

Concerning the central spot, the region was filled utilizing
the 2D extrapolation procedure RADBF built into Pv-wave.
This does not affect the results of the data evaluation, because
not even part of a significant peak was hidden behind the beam
stop.

Concerning the outer dark area, an apron (cf. Figure 3) was
extrapolated again using RADBF, thus extending the usable
area to a square with an edge length of 0.8 nm~. Because
doing so modifies the background in projected curves, the
implications of this extrapolation had to be tested thoroughly.
At first, the extrapolated apron appears to be reasonable: it
shows the expected minimum of the scattering intensity
between small- and wide-angle scattering and swings up after
that.

4.2. Projections. The projected intensity {1}1(s3) now was
calculated by use of eq 1.

4.3. Nonideal Two-Phase System. The first step of data
analysis with respect to structural features is the search for
Porod’s law. By allowing for short-range fluctuations of the
electron density (fluctuation background Ig) and a finite width
of the transition zone between the hard and the soft domain
phase (width of transition zone w;), we allow the observed
structure to be imperfect.”

We have chosen the fluctuation background Ig to be a
constant, although there is good reason to consider a polyno-
mial in even powers of s3.2’ This choice has been made for
practical reasons, because a more complicated method would
require one to measure the background of the fiber scattering
with high accuracy in the far-ranging vicinity of the observed
reflections.

Figure 4 shows {1}1(s3) in a plot that linearizes the Porod
region according to eq 4. In this plot, Ig is varied until the
Porod interval is at maximum length. Then, the width of the
transition zone, ws, is computed from the slope and the Porod
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Figure 4. Porod's law and the consideration of the imperfect
two-phase system in a plot which linearizes the Porod law
region. The shape of the curve for various values of the
fluctuation background Ig is indicated. The width of the
transition zone, wy, is computed from the slope and the Porod
asymptote, Ap, from the intercept of the Porod line. The PEE
sample elongated at ¢ = 1.1.
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Figure 5. Effect of apron extrapolation for the sample in

elongated state at ¢ = 1.1. The interference functions G4(s)

are computed from a SAXS pattern with extrapolated apron

(solid line) and without consideration of extrapolated data

(broken line).

asymptote, Ap,, from the intercept of the Porod line. Intervals
of confidence are estimated from this plot by varying Ig.

4.4. Interference Function and IDF. By using eq 4, the
interference function can now be computed. It is smoothed
using spline functions and a natural smoothing parameter, as
has been described previously® and then transformed into real
space by use of eq 5 yielding the IDF gi(xs).

4.5. Implications of the Extrapolated Apron. Figure 5
shows an example of the effect of the extrapolated apron on
the obtained interference function. If no apron is extrapolated
prior to projection, straightening the Porod region requires
addition to the background instead of subtraction from it.
Consequently, slope w; and intercept Ap, of the regression line
in Figure 4 become a function of the missing information.
Nevertheless, when interference functions are compared;
Figure 5 shows that the difference should not cause great
concern. A comparison of model fits shows that d, and ds, the
average domain heights of the hard and the soft domain phase,
are not affected by the missing data in the projection. On the
other hand, onw/dn and od/ds, the widths of the distributions,
yield scattered values without any sense. The same is found
for the values of Ig, wi, and Ap,.

4.6. Model Fits. Model functions are fitted using the
“simplex” algorithm for nonlinear regression. Detailed descrip-
tion has been published earlier,®2?® and programs are freely
accessible.?> Examples of fits on gi(xs) are presented in Figure
6. For zero and high elongations, a one-component model
suffices. However, at medium elongation, we observe patterns
with two differing long periods (cf. Figure 9), which conse-
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Figure 6. Examples of model function fits to interface
distribution functions gi(xs). Symbols represent data from the
PEE sample in the elongated state at several elongations e.
Solid lines show the best fit. At medium elongation, one
observes two kinds of long periods in the scattering pattern
and fitting is possible by a two-component model only.
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Figure 7. Fiton the interference function. Single-component
model fit for the elongated sample at ¢ = 0.68. This is the last
elongation in the low elongation interval for which a single-
component model gives reasonable parameters.

quently can only be fitted by a model function which supplies
two types of microfibrillar components. The one-component
model has 6 parameters to be fitted, and the two-component
model has 12.

Figure 6 shows measured IDFs and the model fits in a stack
plot. The quality of the fits is excellent. On a Pentium-100
computer, the minimum is found after approximately 1 h.

As has been indicated above, it is also possible to establish
the model function for use directly with the interference
function, Gi(s3), or even the projected intensity of an ideal two-
phase system, {1}1i4(s3). We did not succeed in fitting the
intensity curves directly. Parameters drift in parameter space,
and convergence is extremely slow.

On the other hand, there are cases where a fit on Gi(s3)
proves feasible. Nevertheless, in contrast to fits on gi(xs), two-
component models converge extremely slowly, and even one-
component models give strange results if the fits on gi(xs)
indicate that two strong components are present. If we confine
ourselves to a one-component model, a high-quality fit can be
performed on unsmoothed Gi(ss) curves. This fit reproduces
the parameter values found in the corresponding fit of the
corresponding gi(xs) curves. The worst of the fits is shown in
Figure 7.

It is the nature of fits in reciprocal space that they are
extremely sensitive to long-range order, whereas the data in
physical space are sensitive to short-range correlations only
and faint long-range correlations are ignored. This principal
feature causes fitting on scattering intensity or interference
function to become a strenuous task and is reflected in the
fact that to fit the interference function 115 distance distribu-
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Figure 8. SAXS pattern of the original PEE fiber before
starting the elongation cycles.
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Figure 9. SAXS pattern of the PEE sample at an elongation
of ¢ = 0.88. The four peaks of the four-point pattern result in
the first longitudinal long period. The second long period (slack
fibrils) is in the fifth and sixth peak at the meridian.

tions hi(xs) had to be accumulated. Doing so avoids artificial
wiggling of the model function in the vicinity of 0. The
necessity to consider many terms of the series slows down the
regression considerably. Taking an upper limit of 55 distance
distributions and blanking out the wiggling zone (0 < sz <
0.025 nm™1) yields the same result in a much shorter time (30
min). On the other hand, for a fit on gi(xs), it is generally
sufficient sum up the first 25 distance distributions.

5. Results and Discussion

5.1. General Results. Scattering Patterns. Most of
the scattering patterns have been published previously®
in a 2D colorized representation. Thus, here it may
suffice to present only three patterns. Figure 8 shows
the SAXS pattern of the original PEE bristle before
starting the elongation cycles. Because of the predraw-
ing, it is highly oriented. Most of the extrapolated apron
is not displayed.

Figure 9 shows the SAXS pattern of the PEE sample
at an elongation of ¢ = 0.88. The innermost strong peaks
are split about the meridian (“4-point™) and previously®
have been attributed to an ensemble of taut microfibrils
with lateral correlation (“macrolattice”). At even higher
scattering angles and centered on the meridian, there
is the broad shoulder of a second reflection (“6th point”),
which previously has been attributed to a component
of slack microfibrils which no longer interact with the
external strain.
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Figure 10. SAXS pattern of the PEE sample during relax-
ation from an elongation of ¢ = 0.88. The four-point peaks have
moved outward and are sharper now.

1200

{I},(s9) [au]

0 0.1 ) 0.3
s; [nm!]

Figure 11. One-dimensional scattering curves {1}1(s3) ob-

tained by projection of scattering patterns onto the fiber

direction. Curves are labeled with the elongation ¢ and stacked

with an offset proportional to . Data from PEE sample in the
elongated state.

Figure 10 shows the SAXS pattern of the PEE sample
during relaxation from an elongation of ¢ = 0.88.
Because of the relaxation of the macrolattice its “4-point
reflection” moves outward.

Projections. Data preprocessing, especially the ex-
trapolation of an apron to the vicinity of the recorded
pattern, has been described in Data Evaluation.

Figure 11 shows projected scattering intensities { 1} ;-
(s3) of patterns related to the sample in elongated state.
There is no visual difference between curves obtained
from scattering patterns with or without extrapolated
apron. Only the background and the slope of the curve
in the Porod region are affected, as has been described
in Data Evaluation.

Parameters of the Real Two-Phase System. Figure 12
shows the parameters determined during the search for
Porod’s law (cf. Figure 4). Three samples (0.6 < ¢ < 0.8)
show an elevated fluctuation background lg, whereas
a smooth master curve might be drawn through the
other data points. Values for the interfacial width, wy,
scatter about values between 0.5 and 2.5 nm. This
reflects the fact that SAXS, in general, is not the method
to determine precise values of wi. The Porod’'s asymp-
tote, Ap,, remains constant up to an elongation of € =
0.6 and decays in the further course, indicating a
destruction of the two-phase structure.
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Figure 12. Parameters obtainable from the regression line
in Figure 4: fluctuation background, Ig, width of phase
transition region, w;, and Porod’s asymptote, Ap,. Error bars
are estimated from variation of the fluctuation background.
Some systematic errors have not been considered but may
arise from the normalization to constant irradiated volume and
from some arbitrariness in the extrapolation of the apron (cf.
Figure 3).
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Figure 13. Interference functions G;(ss) computed from the
projected scattering intensity {1}i(ss). PEE sample in the
elongated state. Elongation ¢ is denoted as a legend to the
curves stacked with constant offset.

From the pattern series recorded during sample
relaxation, we get scattered data for the fluctuation
background as well. This might be caused by the fact
that we observe a dynamic system.

Interference Functions. Figure 13 shows a set of
interference functions, G;(ss), computed from the pro-
jected scattering intensity, {1}1(s3), using eq 4. Data are
from the PEE sample in the elongated state. The curves
from the set during relaxation are not presented,
because it is difficult to interpret these curves directly.

Interface Distribution Functions. According to eq 5,
01(x3) curves have been computed from the interference
functions. A set of such interface distribution functions
is presented in Figure 14. The first minimum in these
curves is related to the long period of the microfibrillar
stack. Both of the domain height distributions are
superimposed in the first maximum. A positive intercept
indicates roughness of the domain surface.

5.2. Two-Phase Structure in Elongated State.
Average Domain Heights Determined from Model Fits.
The general result of a one-component (or a two-
component) fit are two (or four) domain height distribu-
tions, each characterized by norm, mean, variance, and
skewness. We thus determine how many domain heights
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Figure 14. Interface distribution functions gi(xs) computed
from interference functions Gi(s3). PEE sample in the elon-
gated state. Elongation ¢ is denoted as a legend to the curves
stacked with constant offset.
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Figure 15. Average domain heights of taut (top, left scale)
and slack (bottom, right scale) microfibrillar components as a
function of elongation ¢, as determined from one- and two-
component fits, respectively. Elongated PEE sample. Fits
performed on gi(Xs).

we observe (cf. values of Ap, in Figure 12), what the
value of the mean domain height is, how wide the
domain height distribution is, and if this distribution
is asymmetric.

In Figure 15, the determined average domain heights
of soft and hard domains are presented. Although in
principle the assignment of soft and hard domain
heights is ambiguous, the interaction of the domain
height distribution with external strain gives enough
information to identify each distribution uniquely. An
immediate result of this identification is that the volume
fraction of hard domains in the original sample,

_ ah 7
¢h—ah—+a; (7)

can be computed from its average hard domain height,
dn = 7.4 nm, as well as the average soft domain height,
ds. The computed value of ¢, = 0.59 is close to the hard-
to-soft segment ratio of the polymer. We know that such
agreement cannot be expected, because there are many
structural features which have been discussed in the
literature in order to predict or to explain deviations.

At medium elongation in the series from the elongated
sample, we observe two kinds of microfibrils. The taut
component (Figure 15, top) elastically interacts with the
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external strain, whereas the slack component (Figure
15, bottom) collects the “waste” from microfibrils, which
are no longer connected to the surrounding elastic
network and remain in the relaxed state.

In the taut microfibrils at low elongations, soft domain
heights start to grow continuously as a function of
external elongation. The internal elongation of these soft
domains is much higher than the elongation externally
applied, which is a necessity because of the rigid nature
of the hard domains filling the elastic network. Never-
theless, the average long period

L =d, + d,

of the taut component increases slower than external
elongation e. Let us study the internal elongation in
more depth. Plotting long period versus external elonga-
tion ¢ for the first five scattering patterns, one finds a
linear relationship and determines that the internal
elongation of the long period,

€. = 0.51¢

is only half of the external elongation. This finding is
in favor of a local irreversibility from the very beginning
of the straining process. Let us now consider the average
soft domain heights, ds. By plotting soft domain height
Versus ¢, a quadratic relation appears to be appropriate.
The fit results in the equation

dy(e) = (5.3 + 10¢ — 4.3¢°) nm (9)

and we deduce that the average initial internal
elongation of the soft domains,

10
S - QG = 0.9¢

€
is almost double the external elongation. On the other
hand, at ¢ = 0.7 just before the hard domains fail,

_10—-2x43x07 _
€5y, = 53 € = 0.75¢

the increase of the elastic domain heights compensates
only three-quarters of the increase in external elonga-
tion.

Beyond an elongation of € = 0.7, we observe a sudden
increase of the average soft domain height and a
corresponding decrease of the hard domain height. We
will discuss this phenomenon later.

Concerning the slack component, we observe that up
to an elongation of ¢ = 0.6 the average hard domain
height decreases. This could be explained as the falling
down of microfibrils (especially those with very short
domains) into the slack component. In a similar manner,
other variations of average values can be interpreted,
but stronger evidence can be given when considering
the domain height distributions as a whole.

Taut Components: Domain Height Distributions. As
has been pointed out above, mean values do not suffice
to describe the scattering and the structure. Only after
statistics has been accounted for can the scattering data
be fitted. Because the presentation of multicolumn
tables appears to be somewhat awkward, we have
chosen to plot the domain height distributions as a
function of strain and then to discuss the findings in a
qualitative manner.
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Figure 16. Height distributions of the hard domains in the
taut microfibrillar component as reconstructed from the
structural parameters of the fits. PEE in the elongated state.
Curves are stacked and labeled with the elongation e.
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Figure 17. Height distributions of the soft domains in the

taut microfibrillar component as reconstructed from the

structural parameters of the fits. PEE in the elongated state.
Curves are stacked and labeled with the elongation e.

Figure 16 shows height distributions of the hard
domains in the taut component. We observe that during
the initial stages of straining the medium height
domains are the most stable ones. By loss of tall and
tiny hard domains to the slack component, the height
distribution narrows considerably. Thus a material with
a narrow distribution of hard domain heights would
probably be a more perfect elastomer. Such an observa-
tion can be explained as the preferential detachment of
hard segments of tie molecules connecting different
microfibrils from tall or tiny hard domains. Such a
mechanism slackens the elastic network.

After an elongation of ¢ = 0.7 every hard domain
appears to lose almost half of its height to the soft
domain heights. This observation can be explained as
the pulling out of tie molecules connecting adjacent hard
segments within the same microfibril from hard do-
mains, which relieves the stress inside a microfibril by
an irreversible process. Drawn-out hard segments then
become part of the soft domain phase.

The height distributions of the soft domains are
presented in Figure 17. As soon as the sample is
elongated, the distribution becomes broad, reflecting
inhomogeneous elasticity of the soft domains in the
material. During the further process of straining, fur-
ther broadening is observed. The sudden shift of the
distribution at ¢ = 0.7 has already been discussed.
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Figure 18. Height distributions of the hard domains in the
slack microfibrillar component as reconstructed from the
structural parameters of the fits. PEE in the elongated state.
Curves are stacked and labeled with the elongation .
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Figure 19. Height distributions of the soft domains in the
slack microfibrillar component as reconstructed from the
structural parameters of the fits. PEE in the elongated state.
Curves are stacked and labeled with the elongation e.

Slack Component: Domain Height Distributions. In
the height distributions of the hard domains displayed
in Figure 18, we find evidence for the explanation of
the decrease of average hard domain height up to an
elongation of e = 0.6. Here, we observe that the decrease
is mainly caused from a strong increase of tiny hard
domain fragments, which increasingly skew the distri-
butions. On the other hand, for ¢ > 0.8, we observe an
increase of a fraction of tall hard domains in the
reservoir of the slack component. Thus, up to an
elongation of ¢ = 0.8, the height distribution of slack
hard domains is mainly fed by small, rough fragments.
Beyond that, taller hard domains become slack, too.

As shown in Figure 19, the distribution of soft domain
heights in the slack microfibrillar component is rather
well-defined, similar to the width of the soft domain
height distribution before stress has been applied. If we
assume that the elasticity of the slack soft domains is
not higher than that of the taut soft domains, we can
deduce that this component, indeed, experiences low
stress. When after ¢ = 0.7 the hard domains in the taut
microfibrils break down, even the slack component
experiences some tension. During further elongation
this strain is lost again.

5.3. Two-Phase Structure of the Relaxing Sample.
Up to an elongation of € = 0.8, the interface distribution
functions gi(x3) can be fitted perfectly using a one-
component model. For higher elongations, a two-
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Figure 20. Average domain heights of the intact microfibrillar
component. PEE sample relaxing from elongation e. Fits
performed on gi(xs).

component model takes into consideration an increasing
component of damaged microfibrils. For elongations ¢
> 1.5, the component made from intact microfibrils can
no longer be detected. In Figure 20, the average domain
heights of the intact microfibrillar component are
shown. One observes that for relaxation from ¢ = 0.26
the soft domain height (ds ~ 4.3 nm) is somewhat
smaller than that for the original bristle (ds ~ 5.2 nm),
whereas the average height of the hard domains (d, ~
7.5 nm) is identical to that found for the unstrained
sample (dn =~ 7.4 nm). To explain this finding, let us
recall that the original bristle had been pretreated by
predrawing and subsequent annealing with fixed ends.

Average Domain Heights Determined from Model Fits.
Figure 20 shows that up to ¢ = 0.7 the intact mi-
crofibrillar component shows no remnant elongation,
because hard and soft domain heights are almost
constant. Nevertheless, a slight decrease of the hard
domain height and a slight increase of the soft domain
height can be observed. This observation supports a
conclusion drawn in earlier work??:30 that even in the
early interval of straining hard domains are degraded
by the pulling out of tie molecules, this being a process
which decreases the degree of physical cross-linking.

At ¢ = 0.8, we observe the breakdown of the hard
domain height in the relaxing images, which is well-
known from the elongated samples (cf. Figure 15). From
now on, as a function of elongation, we observe a
monotonic increase of the average soft domain height,
while the component of intact microfibrils becomes
weaker and weaker, resulting in an increase of the error
of determination.

Structure of Intact Microfibrils. For the component
made from intact microfibrils, Figure 21 shows the
frequency distributions of hard domain heights during
the relaxation from the indicated elongation. By com-
parison of Figures 15 and 20, we have already observed
the identical behavior of the average hard domain
heights. Now by comparison of Figures 21 and Figure
16, we observe that the frequency distributions of the
heights as a whole look very similar. Thus, it is clear
that the “taut component” in elongated state is identical
to the “intact component” during sample relaxation.

Let us continue discussing the intact microfibrillar
component but now turn to the frequency distributions
of the soft domain heights (Figure 22). Although the
mean soft domain height remains constant during the
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Figure 21. Height distributions hy(x3) of the hard domains
in the intact microfibrillar component as reconstructed from
the structural parameters of the fits. PEE sample relaxing
from elongation e. Curves are stacked, labeled with the
elongation, and normalized to their true weight in the fit.
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Figure 22. Height distributions hg(xs) of the soft domains in
the intact microfibrillar component as reconstructed from the
structural parameters of the fits. PEE sample relaxing from
elongation ¢. Curves are stacked, labeled with the elongation,
and normalized to their true weight in the fit.

first four cycles, the shape of the distribution varies.
Here, we observe an increase of very tiny soft domain
heights, while the domain distribution broadens as a
whole. After crossing the critical elongation at ¢ = 0.8,
the number of tiny soft domain heights decreases
considerably. In the elongated state (Figure 17), similar
behavior is found. We can explain such finding if we
assume Young's modulus to vary as a function of initial
soft domain height.

By comparison of the soft domain distributions from
Figure 17 with those presented in Figure 22, we observe
that at constant elongation the curves look similar
concerning relative width and skewness. In comparison
to the elongated state, the relaxing distributions, of
course, are contracted about the xz-axis.

Structure of the Damaged Microfibrillar Component.
As mentioned above, beginning with ¢ = 0.88, the data
from the relaxing PEE sample can only be fitted if a
second microfibrillar component is considered, which
becomes stronger and stronger with increasing elonga-
tion and which is the only component remaining for ¢
> 1.48. As shown in Figure 23, the hard domain heights
of this component contain a considerable amount of
fragments, while the distribution of soft domain heights
(cf. Figure 24) is symmetrical and rather narrow.
Comparing these distributions with the data from the

Analysis of Fiber Patterns 3377

Figure 23. Height distributions hn(x3) of the hard domains
in the damaged microfibrillar component as reconstructed from
the structural parameters of the fits. PEE sample relaxing
from elongation €. Curves are stacked, labeled with the
elongation, and normalized to their true weight in the fit.
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Figure 24. Height distributions hs(xs) of the soft domains in
the damaged microfibrillar component as reconstructed from
the structural parameters of the fits. PEE sample relaxing
from elongation €. Curves are stacked, labeled with the
elongation, and normalized to their true weight in the fit.

sample in the elongated state (Figures 18 and 19) it
becomes clear that the slack component from the
elongated sample is identical to the damaged mi-
crofibrillar component found in the small-angle scat-
tering of the relaxing sample.

Quantitative and Qualitative Analysis. Comparing the
results from the quantitative analysis presented here
with those from the qualitative analysis published
previously,® we observe the same transitions in the
domain height distributions that earlier were deduced
from changes in the positions of the long period. The
long periods computed from the quantitative analysis
are somewhat smaller than those computed from the
positions of peak maxima, as is to be expected because
the structure exhibits a broad distribution of long
periods. At ¢ = 0.6, e.g., the long period determined from
the quantitative analysis according to eq 8 gives a value
of L = 16 nm, whereas from the peak position, we
determine a value of 19 nm.

6. Conclusions

As has been shown in this study, a prerequisite for a
successful quantitative analysis of small-angle scatter-
ing patterns with fiber symmetry is the careful choice
of a small beam stop, a wide vacuum tube, and rather
a short distance between sample and detector. By doing
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S0, one can hope to register not only all of the reflections
with the required accuracy and spatial resolution but
also the important background scattering, including the
increase of scattering intensity toward the WAXS
regime.

Then, a quantitative analysis of the two-phase struc-
ture becomes feasible. For a thermoplastic elastomer
both in patterns from the elongated state and during
sample relaxation, respectively, we identify the same
two structural components, namely, an intact mi-
crofibrillar network which directly interacts with the
external strain and an ensemble of damaged mi-
crofibrils, in which the soft domain height is well-
defined. Each of these components has been described
by a small set of parameters that model the frequency
distributions of domain heights in the fibrous material.
The reader now may ask how reliably such frequency
distributions presented in Figures 16—19 and 2124
can be reproduced. The answer can be estimated by
comparing the results with each other. By use of the
same straightforward method, 26 different scattering
patterns have been projected, analyzed and fitted. The
visualization of these fits shows a clear correlation as a
function of elongation and a trend which is closely
coupled to the features directly extracted from the 2D
scattering images. Thus, the estimated reliability is
high. If, on the other hand, we would modify the
structural model, the domain height distributions might
look different; e.g., let us assume there were reasons to
introduce an additional distribution centered on the
origin, then every domain height distribution would
become narrower, but the general trend as discussed
here would not be changed.

We expect that quantitative investigations such as the
present one may help to match parameters in a me-
chanical model for filled elastic networks, concerning
elastic and viscous parameters, as well as for the
investigation of strain hardening. The proposed method
of data analysis is not restricted to studies of elastomers.
Beyond that, it can be applied to any material with
pronounced fiber orientation and a two-phase structure.
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