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Results of two methods for the quantitative analysis of two–dimensio-
nal (2D) small–angle X–ray scattering (SAXS) patterns with fiber
symmetry are presented. Experimental data originate from studies
of poly(ether ester) (PEE) thermoplastic elastomer materials recorded
during straining experiments at a synchrotron beamline. The first steps
of both methods are similar. By suitable projection of the 2D image
data onto a line (longitudinal scattering, first method) or onto a plane
(transverse scattering, second method) scattering curves are extracted,
which finally can be analyzed in terms of two–phase structural mod-
els considering soft domains and hard domains inside the PEE. The
studied longitudinal scattering in principal is one–dimensional and
originates from chords crossing the soft and hard domains parallel
to the direction of strain only. From these curves interface distribution
functions (IDF) are computed and analyzed using an advanced stack-
ing model. Not only the average domain heights, but four parame-
ters characterizing each of two height distributions (hard and soft do-
mains) are determined as a function of elongation. With several PEE
materials strong equatorial scattering is observed during elongation.
The equatorial scattering is similar to the frequently discussed void
scattering but originates from an ensemble of rodlike soft domains
(needles) in the sample, oriented parallel to the direction of strain. It
can be studied using the second method. From the transverse scatter-
ing the 2D chord distribution is computed, from which the diameter
distribution of the soft needles can be extracted. It is investigated as a
function of strain.
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Introduction

If structural transformations shall be investigated, which occur during manufacturing
or processing of polymer materials, one can only use those few methods which are non–
destructive and do not interfere with the process itself. In this field scattering methods
belong to the most powerful ones. Scattering theory promises the experimenter that he
should be able to quantify a wide range of structural parameters, if only the data are
recorded with sufficient accuracy. Among these parameters are size and distribution
of domains in a multi–phase material, which can be studied using small–angle X–ray
scattering (SAXS). Utilizing a powerful source (synchrotron beam) and a high resolution
two–dimensional detector, nowadays it becomes possible to record series of detailed
scattering patterns with high accuracy during short exposure time.

This chapter presents an overview of work that has been performed by the author
aiming to develop adapted (i. e. a structural model is chosen as late as possible) evalu-
ation methods for SAXS diagrams with fiber symmetry and the results obtained so far
[1–4]. The basic principle of the methods to be presented is the extraction of curves
from the 2D data in the scattering patterns by certain kinds of integrations (“projec-
tions”). The importance of such projections has early been recognized [5]. Novel is the
analysis of the extracted curves in terms of 1D and 2D structural models. Applicabil-
ity is assessed by comparison of the results with the obvious features of the scattering
images.

Experimental

Materials

Poly(ether ester)s (PEE) are common thermoplastic elastomers exhibiting a two–
phase structure of hard domains in a soft matrix. They can frequently be found in au-
tomobiles and as tube materials. Two kinds of multiblock PEEs are investigated. In
the first group the soft segment blocks are made from poly(ethylene glycol) (PEG). The
second group of samples is made from material in which the soft segment blocks consist
of poly(tetrahydrofurane) (PTHF). Hard segment blocks of all samples are made from
poly(butylene terephthalate) (PBT). Soft segment block lengths are in the order of mag-
nitude of . Experiments have been carried out for materials with the hard
segment ratio ranging from 35 % to 60 %. Evaluated data presented here originate from
experiments on materials with a hard segment content close to 60 %.

When such materials are quenched from the melt, they undergo phase separation
forming hard and soft domains. Because phase separation is imperfect, it is common
notion that considerable amounts of hard segments reside in soft domains and even the
hard domains may contain some soft segments ( fig 1). Otherwise one would not be able
to explain the observed domain sizes.
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Figure 1. Discrimination between first, hard segment and hard domain and, second,
between soft segment and soft domain (matrix).

The Experiment

Straining and relaxation experiments are carried out in the synchrotron beam at HA-
SYLAB in Hamburg, beamline A2. A typical maximum elongation

can be reached before the sample slips out of the clamps. During straining small–
angle X–ray scattering patterns are recorded on image plates placed behind the
sample. After exposing for the maximum recorded scattering intensity amounts
to . The geometry of the chosen semi transparent beam stop ensures low
scattering background at the expense of a relatively large central blind area.

Data analysis is carried out using published computer programs[1], which are freely
available[6].

Evaluation Methods

Basic Definitions and General Concept

Because all the samples exhibit a scattering pattern with fiber symmetry, it is con-
venient to write the intensity in cylindrical coordinates, with

and the component defining the symmetry axis of the pattern. Let the
magnitude of the scattering vector be defined by , with being the
wavelength of radiation and the scattering angle. Because the validity of the tangent
plane approximation can be assumed, the complete information of SAXS is in a two–
dimensional (2D) pattern. Such patterns may exhibit many reflections, which moreover
may vary considerably as a function of tunable parameters (fig 3). Thus the analysis of a
2D pattern appears to be cumbersome because of the wealth of data. But for a 2D image
there do exist several methods to extract specific information. Curves gained by such
a procedure only reflect certain aspects of the morphology, and thus hopefully can be
described by a simple structural model.

First steps towards this goal have been undertaken by Bonart [5]. Based upon the
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mathematical relation between structure and scattering, he has proposed to analyze pro-
jections, which can be extracted from the scattering patterns and reflect a longitudinal
and a transverse structure, respectively. Following a concept of Ruland [7, 8], the re-
sulting curves are not fitted by a complex model, but analyzed step by step in order to
“peel off” information. Finally a chord distribution[9] or an interface distribution[10] is
computed. Only now, based upon the observed properties of the resultant distribution,
an adapted model is chosen.

Projections of Fiber Patterns

Definitions of Special Projections
Projections are integral operators which map functions onto subspaces of their def-

inition domain. They shall be denoted by a pair of curly parentheses. The best known
projection in the field of scattering theory maps the scattering intensity onto a
zero–dimensional subspace, which is the number , known as “invariant” or “scattering
power”

(1)

Bonart’s longitudinal structure is obtained by not integrating over the whole reciprocal
space, but only over planes normal to the fiber axis yielding a curve

(2)

which is a function of only. Thus we identify this curve as a projection onto a one–
dimensional subspace and indicate this by subscripting to the pair of braces. Analo-
gously Bonart’s transverse structure

(3)

is computed by integrating along lines running parallel to the direction of strain. In the
case of fiber pattern symmetry, this projection can be displayed as a curve. Nevertheless
we should bear in mind that it is defined over a two–dimensional domain, the –plane.
Because, in principal, all these integrals have to be extended to infinity, one should take
care to register the scattering intensity over a wide angular range.

Projections and Sections
Because of a general theorem of Fourier transformation theory, projections in recip-

rocal space are equivalent to sections in physical space (fig 2). But what is the definition
of a section? In this review it may be allowed to explain the idea of a section intuitively.

Every scientist who has investigated fiber patterns, has placed sections in measured
images. E. g., he studies the scattering intensity along a straight line extending from the
center of the pattern out through the maximum of a reflection. Exactly this is a section
of the scattering intensity. Not rarely such section is placed in a manner that it includes
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Figure 2. Relations between some intensity projections and corresponding structural
features in physical space for the case of SAXS from fibers. (Reproduced with permission
from reference [2] c 1999 ACS)

an angle with the fiber direction. Intuitive reasoning now may lead to the erroneous
conclusion that the variation of scattering intensity along the chosen line would describe
the correlations (of, e. g. domains) in the chosen direction. But on account of the
above mentioned Fourier theorem, the shape of the curve only describes the projection
of deliberately oriented correlations onto the chosen direction of the cut. This projection
is carried out not in the reciprocal space depicted by the fiber pattern, but in the physical
space of the materials structure. Projection in physical space is hard to imagine and,
consequently, it can hardly be described by a structural model. Only in the special
case of a structure generated from stacks of flat and extended lamellae [8,9,11–17], the
intensity found in a section can easily be related to structural notions. Then the well–
known “Lorentz correction” is practically applied to isotropic scattering patterns, and
it performs similar transformation as does a projection to fiber axis in the case of fiber
patterns: It extracts a scattering curve related to a section through a one–dimensional
structure in physical space from a scattering pattern.

Objections against an analysis of intensity projections are heard from time to time.
Argumentation is based on intuitive reasoning and avoids to make use of scattering the-
ory. The most frequent objection tells that a projection of the intensity “doubtlessly
smears the details” of information which are present in the 2D scattering pattern. Be-
hind this reasoning is the feeling that information gets lost. But the same, of course, is
valid when a section of the scattering pattern is analyzed. Moreover, by common under-
standing materials structure is preferably described in physical space, and only intensity
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projection guarantees that no “smearing of structural details” in physical space must be
taken into account when the structural model is built.

A second objection starts from the correct finding that different fiber diagrams (“four–
and two–point diagrams”) may result in identical projected intensities. This objection is
not well–founded, since it is based on the erroneous implication that projection analysis
would claim to fully characterize oriented structures. By contrast, intensity projection
analysis studies intersections of the correlation function, and if two structures result in
the same projected intensity with respect to fiber axis, they indeed share the same inter-
section of their correlation functions with respect to the fiber direction. Consequently,
after projection it is allowed to describe a four–point pattern and a two–point pattern by
the same one–dimensional mathematical model of alternating domains.

Although misorientation of lamellar stacks or fibrils will have significant effects on
scattering pattern and structure, such effects do not affect the applicability of the method
of projection analysis, as long as one accepts that the aim of analysis is not the deter-
mination of layer thickness distributions, but the determination of distributions of chord
lengths passing through layers in fiber direction only. And just this structural aspect
of fiber structure, as to my belief, is the most important one to be related to materials
performance. Falling back to the problem of misorientation, inclined layers will simply
increase the fraction of longer chords in the resulting chord length distribution, because
fiber direction cuts through such layers under an oblique angle. And if the domains are
not shaped like layers or needles, the discussion of orientation is obsolete anyway. But
now let us start to discuss the most important projections in SAXS fiber patterns.

Invariant
It is well–known that the invariant contains all information on the non–topological

character of the structure. Thus, if the electron density difference between hard
domains and soft matrix is the predominant one, it may be possible to gain information
on the volume fraction of hard domains in the sample.

Longitudinal Structure
is a one–dimensional scattering intensity which is related to the section

of the correlation function in direction. Thus it contains information
only on those chords passing the two–phase system in the direction parallel to the fiber
axis, . On the right hand side of the middle row in fig 2 we may represent such a
chord by a deliberate vertical line. Traveling along such a line, we will alternately move
through the hard and the soft domain phase, from time to time crossing a phase boundary.
Thus structural parameters of physical interest are , the average travel distance inside
the hard domain phase, , the average travel distance inside the soft domain phase as
well as the variances ( , and ) of their distributions, which shall be called “domain
height distributions” and .

Thus by computing the longitudinal structure we eliminate all information on trans-
verse correlation of domains from the scattering pattern and reduce the problem to the
case of one–dimensional scattering curves, which is well–known from the theory of
lamellar two–phase systems. For the solution of the 1D problem appropriate data anal-
ysis methods are at hand [2, 8, 10, 15, 16]. As has been mentioned above, analysis of
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isotropic samples with a lamellar domain structure and the analysis of longitudinal in-
tensity projections are closely related to each other. In the first case a Lorentz correction
( ) and in the second case a projection (eq 2) both result in
an intensity which is related to a one–dimensional structure in physical space. Thus af-
ter the extraction of the “1D intensity” analysis proceeds in the same way for both cases.
While from a mathematical point of view the first method is only applicable for isotropic
samples with a lamellar structure, the second is generally applicable. From the physical
point of view the second method is favorably applied to well–oriented systems. Both
kinds of 1D intensities share the same 1D Porod’s law falling off with , because they
both are related to sections in physical space. Generally comparing projection analysis
to an analysis of intensity sections, there is no dilemma concerning the expected fall–off
of scattering intensity in the Porod region with projections even in the case of varying
misorientation. Finally, the well–known dilemma with intensity sections is only a result
of the unknown effect of projection in the space where the structure is.

Transverse Structure
If the pattern reveals equatorial scattering, the equatorial streak may be extracted

from the pattern and analyzed separately. In certain cases (If the streak is clearly sepa-
rated from other reflections and does not “fan out”) it should suffice to mask the mea-
sured pattern

(4)

in order to extract a “needle scattering”, , in particular if this pattern shall
only be interpreted after projecting it. is a shape function, which gives a value
of 1 for and vanishes elsewhere. Thus is the height of the equatorial band.

When dealing with the equatorial streak of a fiber pattern, it appears suitable to
extract the transverse structure . Through Fourier transformation relation this
projection is linked to a two–dimensional two–phase system made from needle cross
sections in a matrix, as indicated in the bottom row of fig 2.

Evaluation of the Transverse Structure
An adapted method for the evaluation of the transverse structure had to be devel-

oped[3]. is generated by a projection process identical to the one carried
out by a Kratky camera. In particular exhibits Porod’s law with the scatter-
ing falling off with . Small deviations from the predicted fall off are accounted to
the non–ideal structure of the real two–phase system[7, 18] and corrected accordingly,
leading to the 2D interference function of an ideal two–phase system

(5)

, Porod’s asymptote of the projected SAXS intensity, is the constant governing
Porod’s law. The non–ideal structure of the real two–phase system is described by
and . Fluctuations of the electron density are considered by , the density fluctua-
tion background. is the width of the transition zone at the domain boundary.
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From the 2D chord distribution [19,20] is computed by

(6)

Here and denote Bessel functions of the first kind. In general, shows the
distribution of chords from needle and matrix cross sections and their correlations in the
plane normal to the fiber direction.

During the analysis of the experimental data it turned out that is positive
everywhere. Thus the correlations among the “disks in the plane” are negligible and

represents the chord distribution of an ensemble of uncorrelated disks in the
–plane (fig 2). Following the principle of late modeling, now it appears rea-

sonable to model the cross section of every needle by a circular disk and to ask for the
properties of a needle diameter distribution, . , can be expressed in terms
of and the intrinsic chord distribution of a disk with unit diameter

(7)

is simply the superposition of compressed and expanded images from weighted by
the value of the diameter distribution, , which shall be studied. Eq 7 is the defini-
tion of the Mellin convolution [8, 21]. can be computed by numerical inversion
of eq 7 utilizing an iterative van Cittert algorithm similar to the one proposed by Glat-
ter[22]. Beyond that one can take advantage of special properties of the Mellin convo-
lution and compute parameters characterizing the needle diameter distribution directly
from the measured chord distribution utilizing moment arithmetics[3].

Results and Discussion

Principal SAXS Patterns of PEE

Images of many different grades of PEE have been recorded. Quantitative evaluation
of the full set of data is still in progress. Four different classes of scattering patterns can
be observed with these samples, which correspond to different basic structure and can
be arranged in the order of increasing elongation (fig 3). None of the materials passes
through all four states. E. g. the commercial material Arnitel E2000/60 (DSM, The
Netherlands) only shows the “microfibrillar state” and the “soft needle state”. For this
material the evaluation of the transverse structure has been carried out. The PEE 1000/57
from the laboratory of Fakirov, University of Sofia, on the other hand, starts from the
“macro lattice state”, transforms into a “microfibrillar structure” and slips from the
clamps thereafter. Data from this sample is used to demonstrate the evaluation of the
longitudinal structure.

In the uppermost image of fig 3 one observes a scattering pattern with narrow beams
of intensity, inclined with respect to the fiber axis. On these beams first and second order
of the long period reflection can clearly be detected. Thus the structure can appropriately
be described by stacks of tilted lamellae.
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Figure 3. Typical SAXS patterns from various PEE samples under strain. Elongation
increases from top to bottom.

The second state shows indented layer line reflections (“4–point–pattern”), the most
appropriate model for which is that of a macro lattice[23,24] from arranged microfibrils.
Frequently one observes the shoulder of a second long period, which is not indented at
the meridian (5th and 6th point), and has been attributed to slack microfibrils which do
not respond to external strain any more[25] (fig 4). Both structural features are collected
in a single intensity projection. This superposition may be considered a “smearing”. It
will be demonstrated that nevertheless the chosen structural model is able to discriminate
between both components in the projected data and to return structural data of each when
used for fitting. Here the question of how to avoid superposition of multiple components
in the projection arises, but let us discuss this issue in the Conclusions section.

Analysis of the Longitudinal Structure

General Evaluation Steps
Projections of the SAXS pattern data from sample PEE 1000/57 according to eq 2

yield the scattering curves shown in fig 5(a). From these curves interface distribution
functions (IDF) (fig 5(b)) are computed by use of eqs 5 and 6.
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6th point
4-point

Figure 4. SAXS pattern of PEE 1000/57 at an elongation . The two different
long periods are indicated by arrows emerging from two different labels.(Reproduced
with permission from reference [2] c 1999 ACS)

In the final step of data evaluation these curves are fitted using a one–dimensional
model function, which unifies[14] the two most frequently discussed models for one–
dimensional statistics, namely stacking statistics[26] and “homogeneous long period
distribution”[27, 28]. It turns out that whenever in the original scattering patterns a
second long period is observed (fig 4), a fit is only possible if a two–component model
is used. This fact is demonstrated in fig 6.

Thus in the end the longitudinal scattering of every one–component sample is de-
scribed by two domain height distributions, and . Altogether both do-
main height distributions, in turn, are defined by a set of six parameters, namely the
integral of the IDF, ; the average domain heights of the hard and the soft domain
phase, respectively, and ; the relative variances of the domain height distributions,

and ; and finally the heterogeneity or skewing parameter, . Conse-
quently a fit of a two–component sample yields values for 12 parameters. Now suitable
visualizations of these parameters as a function of elongation should help to gain better
understanding of the structural changes during sample straining.

Domain Heights Determined from Longitudinal Structure
A plot of the average domain heights as a function of elongation is shown in

fig 7(a). Although in principal the assignment of soft and hard domain heights is am-
biguous, the interaction of the different domain height distributions with external strain
gives enough information to identify each distribution uniquely. After this identification,
as a first result the volume fraction of hard domains in the original sample,

(8)
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Figure 5. PEE 1000/57. (a) 1D scattering curves obtained by projection
of scattering patterns onto the fiber direction. Curves are labeled with the elongation
. (b) IDFs from longitudinal scattering curves . (Reproduced with

permission from reference [2] c 1999 ACS)

can be computed from its average hard domain height, , and its average soft
domain height, . The computed value of is close to the hard–to–
soft segment ratio of the polymer. Such agreement cannot be expected, since there are
several structural features which have been discussed in literature in order to predict or
to explain deviations. Nevertheless, data from an IDF analysis frequently result in such
an agreement and this fact may become interesting to be studied.

At medium elongation we observe two kinds of microfibrils. The taut component
(top in fig 7(a)) elastically interacts with the external strain, while the slack component
(bottom in fig 7(a)) collects “garbage” from microfibrils, which are no longer connected
to the surrounding elastic network and remain in the relaxed state.

At low elongations in the taut microfibrillar component soft domain heights start to
grow continuously as a function of external elongation. The internal elongation of these
soft domains is much higher than the externally applied elongation, which is a necessity
because of the rigid nature of the hard domains filling the elastic network. Nevertheless,
the average long period

(9)

of the taut component increases slower than external elongation . This finding reflects
the known fact that PEE polymers are far from an ideal elastic material. Pull out of
taut tie–molecules from hard domains and a collapse of the hard domains observable at

are characteristic for the straining process of such polymers. The quantitative
data now gained from SAXS data analysis may serve to model the filled elastic network
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Figure 6. Model function fits to IDFs . Symbols marks represent data. Solid lines
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pattern and fitting requires a two–component model. (Reproduced with permission from
reference [2] c 1999 ACS)

and finally to describe the material properties of both hard and soft domain phases.
Since not only average domain heights have been considered in the model function,

the domain height distributions themselves can be reconstructed from the parameter
values of the best fit. Examples for these height distributions are shown in fig 7(b). Here
the height distributions of the hard domains in the taut microfibrillar component
are presented. In the plot of the average domain heights we could hardly observe any
change during the initial phase of straining. Watching the height distributions as a whole
we now observe a narrowing, indicating that the domains with medium height are the
most stable ones. By loss of tall and tiny hard domains to the slack component the
height distribution narrows considerably. Thus a material with a narrow distribution of
hard domain heights would probably be the more perfect elastomer.

Comprehensive discussion both of theoretical background and results can be found
in the original paper[2].

Analysis of the Transverse Structure

General Evaluation Steps
For a straining series of the material Arnitel E2000/60 the equatorial scattering has

been extracted and projected onto the transverse plane as discussed in the section “Eval-
uation Methods”. The resulting curves of are presented in fig 8(a). After
proper consideration of the non–ideal two–phase structure of the sample[3] the 2D chord
distribution is computed by means of eq 6. The corresponding curves are shown
in fig 8(b). When such equatorial scattering was first observed [29], it was attributed to
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Figure 7. PEE 1000/57. (a) Average domain heights of taut (top, left scale) and slack
(bottom, right scale) microfibrillar components as determined from fits. (b) Height dis-
tributions of the hard domains in the taut microfibrillar component as reconstructed
from structural parameters determined in fits. (Reproduced with permission from refer-
ence [2] c 1999 ACS)

the existence of elongated microvoids in the fiber. Here, with the PEE samples, the
formation of these elongated domains is preceded by the destruction of hard domains
and growth of a long period reflection which merges with the primary beam before the
equatorial scattering emerges. This peculiarity led to the interpretation that the observed
equatorial scattering most likely is caused from elongated soft domains, which are a
product of the destruction of hard domains. Those elongated soft domains thus should
contain almost equal parts of soft and hard segments, according to the chemical compo-
sition of the poly(ester ether).

Because in good approximation the curves are positive everywhere, we are allowed
to consider the structure to be built from an uncorrelated ensemble of domains, which
shall be addressed as “soft needles”. Thus by application of moment arithmetics we
compute the average needle diameter, , the relative width of the needle diameter dis-
tribution, and the total cross section of the needles with respect to the total cross
section of the fiber.

Data are presented in fig 9(a). From fig 9(a) it becomes obvious that the mean
diameter of the needle shaped domains decreases almost linearly with increasing elon-
gation, while for rubber elastic behavior, one would have expected a decrease according
to . As is shown in fig 9(b), the reason is that the disk diameter
distribution alters its shape. With increasing elongation more and more thin needles are
emerging, which cause the average diameter to decrease considerably. A different ex-
planation for this effect can be given by an increasing raggedness of the needle cross
sections circumferences. Extrapolating linearly towards , one finds a hypothetic
average initial diameter of the soft domain needles. , the relative
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Figure 8. a) Projections of the equatorial scattering onto the plane normal
to straining direction. Arnitel E2000/60 . b) Chord distributions of Arnitel
E2000/60 computed from the curves in (a). (Reproduced with permission from refer-
ence [3] c 1999 John Wiley.)

width parameter of the disk diameter distribution, hardly increases. The total needle
cross section per fiber cross section, becomes constant for elongations . On the
other hand, in the observable region of elongations a considerable de-
crease is observed. This decrease indicates a strain hardening process of the soft needles:
During the straining process the soft material of the needles is compressed in transverse
direction with respect to the surrounding matrix material. An assumed increase of the
needle density during this process would amplify the observed effect. The measured
values could be compared with measurements of Young’s modulus, and stress–induced
polymorphic transitions[30] could be discussed in conjunction with the presented result.
More comprehensive discussion of the theoretical background and the results can be
found in the original paper [3].

Conclusions

It has been demonstrated, how the utilization of the concept of projections can help
to analyze two–dimensional SAXS patterns with fiber symmetry quantitatively. Because
the computation of long ranging integrals is involved in this method, a prerequisite for
successful analysis is the careful choice of a small beam stop, a wide vacuum tube, a
rather short distance between sample and detector and a fast and linear detector. By do-
ing so one can hope to register both all the reflections and also the important background
scattering with required accuracy and spatial resolution.

Comparison of the determined structural parameters with the obvious features in a
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Figure 9. (a) Characterization of the ensemble of needle–shaped soft domains in Arnitel
E2000/60 as a function of elongation . (b) Diameter distributions, , of soft do-
main needles computed by numerical Mellin deconvolution of curves shown in fig 8(b).
(Reproduced with permission from reference [3] c 1999 John Wiley.)

series of scattering images shows good agreement. Therefore projection analysis ap-
pears to be a suitable method, if 2D scattering patterns with fiber symmetry shall be
evaluated quantitatively. Both for the identification of structural components and for the
purpose of testing the stability of the multi stage evaluation method, it helps to analyze
a comprehensive data set, in which an external parameter like the elongation is slowly
varied. Thus one can obtain accurate quantitative data not only on domain size aver-
ages, but also on their statistics. All in all application of these methods results in a more
detailed description of the domain structure from polymers in the oriented state.

If multiple structural components are obvious in the scattering patterns, one is tempt-
ed to separate the contributions directly in the scattering pattern. For the general case this
idea is a considerable challenge, and it remains questionable if such an attempt would
be successful without the necessity to sacrifice the principle of late structure modeling.
A more promising approach, I believe, will be to transform the fiber diagram as a whole
into a 3D chord distribution with fiber symmetry. By this operation no structural infor-
mation is lost, but the information content of the scattering image will be transformed
into physical space. In fact, the two kinds of chord distributions discussed in this work
are nothing else but the two principal sections through this 3D chord distribution (in
meridional and equatorial direction, respectively).
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