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A method is presented that permits the extraction and visualization of
topological domain structure information contained in small-angle scattering
(SAS) patterns without complex pretreatment. Multi-dimensional noisy raw
data can be processed. Such data are, for instance, accumulated in the field of
materials research from short-exposure-time in situ small-angle X-ray scattering
(SAXS) experiments with synchrotron radiation. The result is a multi-
dimensional intersect or chord distribution, which is defined as the Laplacian
of the correlation function. Moreover, it is equivalent to the autocorrelation of
the gradient of the electron density. The procedure is, in particular, adapted to
the analysis of the nanoscale structure of samples with fibre symmetry, such as
polymer fibres or strained elastomers. Multi-dimensional relations among
morphological components become apparent in real space and help to elucidate
the nature of the processes governing formation and change of structure on the
nanometre scale. Utilizing digital signal processing tools, the algorithm is based
on spatial frequency filtering of the raw data. The background to be subtracted
from the small-angle scattering pattern is formed from its own low spatial
frequencies. Noise may be removed by suppressing high spatial frequencies. In
the frequency band between these low and high spatial frequencies, the domain
structure information of the studied nanocomposite appears.

1. Introduction

The extraction of structural data from small-angle scattering
patterns has been a problem of constant interest to
researchers for many years, particularly in the field of bulk
polymer materials. Raw experimental data are inexact and,
moreover, describe a physical structure which can only be
modelled imperfectly. It is common practice to eliminate
apparent effects after measuring the detector characteristics,
the blind scattering and the sample absorption. What remains
is, in general, the scattering pattern of a non-ideal multi-phase
system. Single-phase or fractal systems will not be considered
in this paper. Moreover, the study does not claim to focus on
isotropic dilute or liquid materials, for which background of
different nature is corrected by established experimental
methods.

Deviations from an ideal multi-phase structure have been
discussed for many years (Ruland, 1971; Wolff et al., 1994;
Ruland, 1987; Siemann & Ruland, 1982; Ciccariello, 1985;
Ciccariello & Benedetti, 1986; Stribeck et al., 1997). Fluctua-
tion of the electron density inside the phases, for instance,
causes a slowly varying background in the scattering data
(Ruland, 1971). The decay of the scattering intensity resulting
from Porod’s law (Porod, 1951) is increased by a smooth
transition zone at the phase boundary (Ruland, 1971), and
added roughness of the boundary itself raises the specific

surface (Ruland, 1987). These slowly varying effects are
superimposed in the scattering pattern. In isotropic data they
can only be separated after resorting to extensive assumptions,
and whenever anisotropic scattering data are to be analysed,
these ambiguities become even more elusive. When two-
dimensional scattering patterns from samples with fibre
symmetry have been studied quantitatively, the work has been
restricted to the analysis of curves extracted from the scat-
tering patterns (Bonart, 1966; Stribeck, 1999, 2000; Stribeck et
al., 1999; Cohen & Thomas, 1987; Hall et al., 1987; Hall &
Hussain, 1990; Kumar et al., 1994), which only reflect partial
aspects of the domain structure.

The presented method points at a solution of the afore-
mentioned problems, in so far as a multi-phase system is to be
studied. Assessment concerning short-range fluctuations of
electron density as well as such concerning the width of the
interfacial layer between the domains cannot be made.

Closely related to the work presented here is a recent
publication (Elliot & Hanna, 1999) presenting a method for
the generation of a domain-structure picture from a small-
angle scattering pattern. The authors present a maximum-
entropy algorithm on Shannon’s entropy with respect to the
electron density map in real space. The result of the algorithm
is an image of one of the most probable electron density
distributions, which in a two-dimensional universe would
generate the observed two-dimensional scattering pattern.
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2. Multi-dimensional chord distributions from SAS
patterns

2.1. Overview

Whenever scattering methods are utilized, data are
recorded in reciprocal space. From these data, structural
information in physical space can be gained. Each effect,
which in the scattering pattern is manifested as a slowly
varying function, can be assigned to low spatial frequencies in
physical space. Counting statistics, on the other hand, is most
clearly apparent at high spatial frequencies. Thus, the acces-
sible structural information of a scattering pattern is contained
in a spatial frequency band between background frequencies
and high-frequency noise. If an ambiguous image in physical
space is not accepted, a (multi-dimensional) correlation
function (Vonk & Kortleve, 1967; Vonk, 1979), an interface
distribution function (IDF) (Ruland, 1977, 1978; Stribeck,
1993) or a chord distribution (Glatter & Kratky, 1982; Méring
& Tchoubar, 1968) may be computed. According to the
previous considerations, such an image is computed in three
automatable steps: (i) proper transformation of the scattering
pattern, (ii) band-pass filtering and (iii) Fourier transforma-
tion. Thus, now the choice of filter characteristics must be
discussed and takes the place of a discussion of deviations
from the ideal multi-phase model. Considering the new
paradigm, the effect of smoothing the scattering pattern by a
band-pass filter on the morphology acquires a novel meaning.
The upper edge of the filter defines a distance in real space,
beyond which no information on correlations among domains
can be retrieved. Hence, the main effect of noise reduction by
prolonged exposure is increased information on long-range
order.

2.2. Definitions

Let I(s) be the observed SAS intensity. The magnitude of
the scattering vector can be defined by |s| = (2/A) sin 6, with A
the wavelength of radiation and 20 the scattering angle.
Common notations will be used for both the case of isotropic
scattering patterns, by writing I(s) = I(s) with s = |s|, and for the
case of a scattering pattern with fibre symmetry, I(s) = 1(s12, 53)
with s, = (s + s3)"? and the direction of s; defining the
symmetry axis of the pattern.

For the two cases mentioned, it can frequently be guaran-
teed that the recorded information on the structure is
complete. In the isotropic case, the complete SAS information
is contained in a curve. If in the case of fibre symmetry the
tangent plane approximation is assumed to be valid, the
complete SAS information is contained in a two-dimensional
pattern, which can be recorded using a two-dimensional
detector. Additionally, the researcher has to contribute to
completeness, in so far as relevant information must not be
hidden by the primary beam stop, and in the peripheries of the
pattern the Porod region must have been recorded.

2.3. Intensity projection onto a plane

If the scattering pattern is already complete in a subspace of
the three-dimensional reciprocal space, the suitable projection

(Bonart, 1966; Stribeck, 1992, 1999, 2000) has to be carried out
before the following one-dimensional or two-dimensional
Fourier transformation. In classical methods, special Fourier
kernels are employed, which comprise the projection impli-
citly. For the data evaluation of scattering ‘images’ with fibre
symmetry, it is convenient to utilize commercial standard
software for image processing, such as pv-wave (1997),
IDL (1999) or Matlab (2000), to carry out the necessary
projection

Ip(sy, 83) = {I(s12, 83)}(51, 83) = fl(s12, s3) ds,, )

the two-dimensional Fourier transformation #2(Ip)(ry, 13) =
P(ry,, r3) of which is known as the two-dimensional (electron-)
density correlation function (Vonk, 1979) in cylindrical coor-
dinates. Let us consider a correlation function computed from
ideal model data and turned into a two-dimensional digital
image. Then, anticipating the next subsection, the generalized
chord distribution can be computed by convolution with the
digital Laplacian operator (Habericker, 1989; Rosenfeld &
Kak, 1982)

2.4. A generalized chord distribution

In the case of isotropic data, the features of the nano-
structure can be visualized much more clearly in a chord
distribution function (CDF) (Méring & Tchoubar, 1968) or in
an interface distribution function (IDF) (Ruland, 1977) than
in a correlation function. Now the question arises: how can the
one-dimensional concepts of the CDF and the IDF be gener-
alized for the case of multi-dimensional scattering data from
multi-phase systems? Three approaches are presented here.
The mathematical background of the only one which has
proven its feasibility for the evaluation of experimental data is
presented in Appendix A.

Projecting anisotropic scattering data onto (inclined) lines
passing through the centre of the pattern appears to be the
straightforward approach. After multiplication by s* and one-
dimensional Fourier transformation, each curve gives the
multi-dimensional CDF g(r, v, ) in a single direction, from
which the total CDF can be constructed. Applied to ideal
model data, this method works perfectly, but as soon as noise
and background are added to model patterns, background
separation becomes a problem. Then the missing ‘connec-
tivity’ among the individual rays results in artifacts as a
function of ray orientation, which are difficult to control.

As a second possibility, Burger & Ruland (2000) propose to
define the generalized CDF by the second derivative of the
correlation function with respect to r, the modulus of the
vector in physical space. Pursuing this concept for the case of
fibre symmetry obviously results in a solution made from three
integral transforms. Based on this solution, no numerical
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procedure has been found that is able to reproduce even the
known result for the scattering of a sphere.

As deduced in Appendix A, the autocorrelation of the
gradient of the density distribution can be defined as a chord
distribution z(r) = [Vp(r)]*? for any multi-dimensional case. It
is equivalent to the Laplacian AP(r) of the correlation func-
tion and can be computed from the multi-dimensional Fourier
transformation of the scattering intensity I(s) after multi-
plication by 47°s>. For samples with fibre symmetry, we start
from the projected intensity /» and obtain

I, (sy,85) = 4r’s’ Ip(sy, s3) @)

with 5% = (s3 + s3)""? in this context.

In the next evaluation step, the non-ideal character of the
studied multi-phase structure has to be considered. In the
classical methods (Ruland, 1971, 1977; Stribeck & Ruland,
1978) this is accomplished by subtraction of several slowly
varying backgrounds (density fluctuations, width of the phase
transition, domain roughness). These backgrounds are well
justified for physical reasons, but difficult to separate. The
result of this operation is an interference function G(s), which
shall be subject to a Fourier transformation. Since our interest
is not in the study of non-ideal character, but information on
shape and arrangement of the nanometre-size domains, the
composite slowly varying background in the SAS image is
considered a parasitic effect which has to be eliminated.
Obviously, a suitable background can be extracted from the
SAS pattern itself by computing the low-pass-filtered pattern,
fe.r [1L(s)]. Its subtraction reduces the central singularity in the
Fourier transformation of I;(s). Hence an adapted inter-
ference function G(s),

G(s) =I.(s) = fo, [1.(9)], ®)

is defined based on a low-pass-filter operator f, , () with a cut-
off frequency r.. On the one hand, a background correction
based on a low-pass filter is no more arbitrary than the
background fitting methods commonly employed in the
evaluation of small-angle scattering curves. On the other hand,
the extension of low-pass filtering to multi-dimensional data is
straightforward. Long experience in the evaluation of one-
dimensional scattering data has shown that any background
chosen with common sense yields very similar results for the
values of the topology-related parameters.

Analogously, in the multi-dimensional case, a filter para-
meter variation shows that the final CDF is altered only
marginally, as long as a filter with smooth frequency response
is chosen and the cut-off frequency is kept low. For the
commonly used Butterworth filter, this means that a low order
has to be chosen in order not to imprint artifacts resulting
from discontinuities of the filter response function. A first-
order Butterworth filter,

fon 1) = T HF LI/ (L +r/r.)) 4)

[r = |r|; 7() designates the multi-dimensional Fourier trans-
formation], has proved feasible in many fields of research.
Application shows that the cut-off frequency r, can be varied
within a fairly wide range without change of the apparent

topological parameters. Nevertheless, after background
subtraction there remain intensity discontinuities at the
circumference of the sensitive area of the detector. The
general procedure to minimize the corresponding artificial
undulations in real space is multiplication by an appropriate
windowing function. Frequently the ‘Hamming window’ is
used. As a result of its discontinuity, it produces visible arti-
facts in the evaluated images. A better choice is the ‘Hann
window’ (Press et al., 1992), which is sometimes called the
‘Hanning operator’ (pv-wave, 1997).

2.5. Noise filter

Whenever the original data have been measured with high
accuracy (more than 10000 counts in the maximum) and have
already been projected, filtering of the high-frequency noise is
not necessary. But in situ measurements of crystallization or of
straining processes frequently require short exposure inter-
vals. Limited capacity of the currently available detectors then
causes even the projected data to exhibit pronounced noise. In
this case, it is recommended to employ a noise filter,

G(®) = f, [GG)]- ©)

For typical polymer materials, a noisy but complete inter-
ference function with an edge length of 512 pixels appears to
be sufficiently smooth after application of a Butterworth low-
pass filter with a cut-off frequency of r. = 30 (in units of pixels).
One has to bear in mind that after this filtering operation, in
the final chord distribution, only the central area of approxi-
mately £2r, is non-zero and contributes to the morphological
information on the sample. Information concerning longer
ranging order or bigger domains was eliminated by the
statistical noise of the measured data. This means that,
whenever a test measurement with long exposure shows that
long-range order in the material is low, noise filtering will not
cause loss of information. Middle-frequency noise cannot be
eliminated. We have to assume that this kind of noise will
become the reason for deviations between a statistical model
and the real-space representation (e.g. chord distribution,
correlation function) or that its amplitude remains small as
compared with the signal amplitude. The latter assumption is
plausible, because visual perception recognizes two pictures to
be similar if their middle spatial frequencies match. An
apparatus recording patterns in which the middle frequencies
vary at random would not fulfil the criterion of reproducibility.

2.6. Discrete Fourier transformation

Finally, the interference function G(s) or G(s) is subject to
a discrete Fourier transformation, which is available for almost
any data evaluation package and named DFT or FFT. In order
to increase spatial resolution, the pattern has to cover a wide
area in s. Because of the definition of G(s), it is allowed and
common practice in the field of digital image processing to
expand with zero intensity data (‘zero padding’). The DFT
algorithm requests the centre of the pattern to be located in
the centre of a corner pixel. Thus the pattern is moved, the
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Fourier transformation carried out and the centre returned to
its original position. The result

2(r) = —7[G(s)] (6)

is the chord distribution z(r). Starting from (1), the projection
Ip(sy, s3) of a scattering pattern with fibre symmetry, a two-
dimensional Fourier transformation yields the section of
z(ry, r3) in the (rq, r3) plane. Because of fibre symmetry, the
equivalence r; = ry, is valid. Thus the complete morphological
information concerning size and arrangement of domains is
right at hand in the physical-space function z(ry,, r3) after few
evaluation steps.

The method has been tested using the model scattering
functions of spheres, lamellae, rods and layer stacks, both with
uniform dimension and with a statistical variation of the
particle dimensions. It is stable even for noisy data. The
deviation of the resulting CDF z(r) and the ideal CDF g(r)
computed from perfect model data after projections onto
inclined lines is small.

3. Example
3.1. Data evaluation steps

Fig. 1 shows the SAXS pattern of a poly(styrene-b-
isoprene-b-caprolactone) tri-block copolymer. It is part of a
stretching series recorded at HASYLAB, Hamburg, beamline
A2. After an exposure time of 2 min, the signal-to-noise ratio
is high. On the USAXS beamline BW4, the same data quality
is obtained after an exposure time of 60 min. Shortening the
exposure time by a factor of 20 and applying the aforemen-
tioned low-pass filter yields the same result concerning the
domain structure. Detector characteristics and blind scattering
have been considered. The image I(s,, 53) is already centred,
aligned and averaged over four quadrants. It is complete,
because it covers a region wide enough both in s, and in s;3
and no features are missing in its centre.

Fig. 2 shows the result of the projection (1) of the fibre
scattering. This operation reduces the statistical noise in the
data set considerably and concentrates intensity in the centre
of the pattern. Anticipating Fourier transformation, this
narrowed intensity distribution will result in a more extended

I(s 15, 53)

I3 (0~lnm~1) s\

Figure 1

Two-dimensional SAXS pattern with fibre symmetry of an SICI tri-block
copolymer at an elongation ¢ = 0.5, recorded at HASYLAB, Hamburg,
beamline A2, on an image plate (2 min exposure) (range: —0.15 < s, <
0.15nm™!, —0.15 < 53 < 0.15 nm’l).

I(s 15, 53)

93 (0. lnm;l)

Figure 2

The projection [ I(s;,s;)ds; of the fibre scattering intensity onto the
(s1, 83) plane concentrates the intensity in the centre and smoothes the
pattern.

pattern in physical space. After multiplication by s> the
pattern shown in Fig. 3 is obtained. Fig. 4 shows the back-
ground extracted from the scattering pattern by application of
a first-order Butterworth filter with a critical frequency of r. =
0.7 in units as described in §2.5. The resulting pattern is shown
in Fig. 5. Finally the Fourier transformation is applied,
generating the complete chord distribution function of the
domain structure. Fig. 6 presents a view of the upper face of
this chord distribution, in which the inner peaks are associated
with the domain size distributions whereas the outer peaks
describe their mutual correlations within the fibre. Turning the
chord distribution upside down would result in a view of the
lattice face, in which the pronounced peaks are associated with
the distributions of increasing orders of lattice constants.

3.2. Discussion of the result

The view in Fig. 6 mainly exhibits the pronounced broad
domain thickness distributions, which indicate tilted layers
with a certain orientation distribution. If, on the other hand,
the chord distribution is viewed along the meridional direction
(Fig. 7), a sequence of low-height peaks in the centre of the
image reveals that there is a fraction of a second kind of
domains, forming a structure perfectly oriented in the direc-
tion of strain and possessing low lateral extension. These

I(s 5, s3)

53 (0.1nm-1)

Figure 3
The projected intensity after multiplication by the second power of the
distance from the centre of the pattern.
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I(s 15, 53)

22
0.0 &
@.
Q.Q g\q’
53 (0.1nm"1)
Figure 4

The background generated by extraction of the low spatial frequencies in
the scattering pattern using a first-order Butterworth filter.

I(s 5, s3)

QD

53 (0.1nm™)

Figure 5

The interference function G(si, s3) is generated by subtraction of the
filtered background function (cf. Fig. 4) from the pattern in Fig. 3 and
application of the Hann window operator.

domains may be identified as hard domain cylinders aligned in
a row along the fibre axis.

After interpreting the maxima of the chord distribution, one
should also discuss the minima of the functions surface, which
exhibit the different orders of the ‘lattice constant’. They are
best observed after turning the surface upside down. Viewed
along the meridian, this ‘lattice face’ (Fig. 8), exhibits the
peculiar orientation distributions of the ‘long periods’. The
rapid decay of the peaks as a function of their distance from
the centre of the chord distribution reflects poor long-range

g(ri2, 13

O
o« o

I3 (nm

Figure 6

Three-dimensional Chord distribution z(ry,, ;) generated by Fourier
transformation from the interference function G(s). View of the ‘domain’
face seen almost perpendicular to the equator of the fibre.

Figure 7
Chord distribution z(r,, r3). Perspective of the ‘domain’ face viewed
along the meridian of the fibre.

0.0
riz (nm)

Figure 8
The chord distribution turned upside down (‘lattice face’) —z(r), viewed
along the meridian.

Lamellar
self-correlation

Long period
of the stack

e

10 0 “' -
"3 (hm) o0

Figure 9

Model CDF —z(r) from an ensemble of perfectly oriented stacks from
two lamellae computed after one background-subtraction step. The
central indentation in the ‘lamellar self-correlation’ is a result of
background subtraction.
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order of the nanostructure. At the equator, one observes a
maximum in the first order, whereas the second and third
order exhibit a relative minimum at the equator. Thus the
range of the ‘lattice’ structure in the equatorial direction is
much shorter than that of the structural component, which is
formed by lamellae tilted with respect to the equator. All in
all, the multi-dimensional chord distribution reveals the
complex nanostructure of the polymer sample.

3.3. Discussion of the method

The example presented originates from a scattering pattern
with pronounced peaks. Here the single subtraction of a two-
dimensional low-pass background results in an unambiguous
CDF, the features of which can hardly be modified by varia-
tion of the filter parameters. The result shall be named a ‘CDF
of the first kind’.

Sometimes, however, reflections in scattering patterns are
only observable as shoulders on a monotonously decaying
background. In this case, background subtraction has to be
carried out iteratively, until the total integral of G(s) vanishes.
This procedure may be allowed if the presence of strongly
distorted multi-phase nanostructures can be assumed. In this
case, the iterative background subtraction removes ‘rough-
ness’ from the domain surfaces, until a clear multi-phase
structure remains and a ‘CDF of the second kind’ is obtained.
Even if such a CDF appears to show clear features, they should
be interpreted with caution. Confidence can be gained by
comparison of many CDFs from a series in a continuous
experiment. But even if a reasonable variation of the structure
is observed, it remains questionable if the substantial aspects
of the multi-phase structure have passed the cascade of spatial
frequency filters.

Even more important is the implication of any background
subtraction itself. It is based on the understanding that z(0) =
0, which means that there are no chords of zero length.
Commonly, the self-correlation peak of the structure as a
whole is considered to be a delta function at the origin. But for
structures containing highly oriented domains, the self-corre-
lation peak, in general, is not restricted to the vicinity of zero.
Processing model scattering functions, one can easily
demonstrate that the self-correlation of a lamella is a wide
‘triangle’ extending along the equator of the CDF, whereas the
self-correlation of a rod is a wide triangle extending along the
meridian. Background correction of scattering patterns has a
strong effect on the central part of the CDF. Iterative back-
ground correction, in particular, will force the central part of
self-correlation triangles to bend towards zero. The result in
the CDF looks like a pair of strong correlation peaks on the
lattice face of the CDF. Fig. 9 shows the lattice face of the
model CDF from an ensemble of layer stacks made from two
lamellae. The ‘lamellar self-correlation’ would look like a
triangle, if no background subtraction were performed. As a
result of the background subtraction, a central indentation is
observed. Recursive background subtraction increases the
artificial effect and may even cause visible attenuation of
structural features in the CDF pattern.

4. Conclusions

The presented procedure only works with little user inter-
vention if it is supplied with complete data. In this case it
extracts the morphological information of SAS patterns within
a minute and visualizes it in a clear physical-space repre-
sentation, which is well suited for visual interpretation and, in
the future, perhaps, even for quantitative analysis.

The qualitative analysis of the multi-dimensional chord
distribution supplies the researcher with information on
domain size, domain shape, domain orientation, range of
order and, last but not least, on the number of components in
the structure and their mutual arrangement in space. This
information is valuable input for the design of an adapted
structural model.

By fitting such a model to the scattering data, it should
become possible to separate the components of the structure
and quantitatively to describe their statistics, as has been
performed in previous work for one-dimensional stacking
statistics (Stribeck, 1993) and for one-dimensional projections
from fibre patterns (Stribeck, 2000). If an in situ experiment is
monitored by recording scattering patterns, the experimental
parameters, like elongation, temperature or time, in conjunc-
tion with the observed structural changes, will help with the
task of understanding the complexity of the morphologies
which show up in multi-dimensional chord distribution func-
tions. Moreover, the multi-dimensional relations among the
components of a multi-component morphology may help to
enlighten the nature of the processes governing structure
formation and change in polymer materials on the nanometre
scale.

APPENDIX A
The Laplacian of the correlation function

A1. The correlation function and its generating potential

Let p(r) = p(—r) be a correlation function generated from a
potential u(r) according to

p() = u(r) * u(—r) ;= u(r) ™)
(autocorrelation) with

f@) % h(r) = [f(y) h(y — 1) dv,

being the definition of the correlation. Here v designates
volume integration. Let the Fourier transformation exist:

1(s) = 7°[p(r)] = [ p(r) exp(2mirs)dv,. (8)

A2. Gradient of the potential and its autocorrelation

It can easily be shown that (Vu)*?(r), the autocorrelation of
the gradient of the generating potential in Cartesian coordi-
nates, is given by

ou *2
P o ©)

i

(me=i(

i=1
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A3. The Fourier transformed terms
Let

Us) = 7[2— (r)}

be the three-dimensional Fourier transformations of the ith
component of the gradient of the generating potential. Then
after transformation of (9) we obtain, in Cartesian coordi-
nates,

PV (e)] = 2 UZ(s). (10)

after application of the correlation theorem.

A4. The transformed partial derivatives

For the three-dimensional Fourier transformation of a
partial derivative du(r)/dr; with respect to the ith Cartesian
coordinate,

U,(s) = 2mis; 7°[u(x)] = 2mis; U(s)
is valid. After insertion of this into (10), one obtains
F(Vuy?(r)] = —4n’s*> U(s). (11)

Applying the convolution theorem and (7) to the right side,
one obtains the result

73[(Vu)*2(r)] = —4ns? 73[p(r)] = —47s? I(s). (12)

In scattering physics, the generating potential u(r) is known as
the ‘density function’ from which the scattering is caused. I(s)
is the scattered intensity. In the field of SAXS, u(r) = pei(r) —
(pe1(r)), is the variation of the electron density about its spatial
average.

A5. The Laplacian

The correlation function p(r) itself can be considered a
potential, since it is a scalar function of the vector in physical
space. For potentials, the Laplacian in Cartesian coordinates is
defined by the equation

sty = 32770 (13)

i=1

By applying the definition to (8) and performing the Fourier
transformation, one obtains

FAP®Y)] = —4m°s* I(s). (14)

Comparison with (12) reveals the identity of the right sides.
Thus, it follows that the Laplacian applied to the correlation
function is equivalent to the autocorrelation of the gradient of
the generating potential. In this paper, Ap(r) = z(r) is called
the ‘generalized chord distribution’.

The Laplacian introduced here is also employed in the fields
of digital image processing and in theoretical chemistry for the
purpose of analysis of scalar functions. In the field of image
processing, it is particularly justified if the image has been
blurred by a diffusion process (Rosenfeld & Kak, 1982). In
theoretical chemistry, the Laplacian is applied to electron
density in order to visualize localized electron pairs (Bader,
1990).

This study has been carried out in the frame of the
HASYLAB project 1II-98-067, ‘Polymers with Fibre
Symmetry’. The preparation of the sample by E. Buzdugan
and P. Ghioca, ICECHIM, Bucharest, in the frame of project
RUM-047-97, ‘Novel Block-Copolymers with Improved
Service Properties’, funded by the German and the Romanian
Ministries for Education and Research, is gratefully
acknowledged. The author gratefully appreciates the
helpful discussion of the manuscript with C. Burger and W.
Ruland.
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