
Introduction

Polymer nanostructures are found in almost any
isotropic polymer material. They exhibit poor long-range
order, in general. Thus, the corresponding discrete small-
angle X-ray scattering (SAXS) comprises a few broad
peaks and is superposed by a strong diffuse background
which should be subtracted before quantitative analysis
is undertaken. Such analysis is only reasonable if it is
based on a topological model, the validity of which has
been verified by other methods. Images from electron
microscopy [1, 2] resulted in the cognition that the simple

model of a lamellar two-phase system can be applied to
the nanostructure of many polymer materials. Owing to
this promising starting position, researchers have been
concentrating on the solution of the SAXS analysis
problem for a long time.

The basic properties of scattering from a multiphase
system have been discussed by Porod [3]. Debye’s
general correlation function [4] has paved the way to
analysis of scattering data from distorted structures in
the physical space. The practical applicability of this
concept for the case of a lamellar two-phase system has
been exhausted in the work of Vonk and coworkers [5–8]
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Abstract A separation method by
spatial frequency filtering of the
diffuse background of small-angle
X-ray scattering (SAXS) is trans-
ferred to the case of isotropically
scattering samples of polymer mate-
rials. Analysis of the residual
discrete SAXS is demonstrated.
Evaluations of model scattering
curves from lamellar two-phase
systems show that this technique, in
general, results in a good separation.
If samples with pure particle scat-
tering or such with rough domain
surfaces are investigated, the
separation of a suitable background
is possible, but is prone to some
uncertainty which is estimated. In
the case of particle scattering from
lamellae the problem is solved by
fitting a model function considering
polydispersity to the Lorentz-cor-
rected scattering intensity. After
background correction the residual

information on the distorted nano-
structure is collected in an interface
distribution function, from which
topological parameters can be
recovered with high accuracy. These
parameters comprise average layer
thicknesses and parameters of
particle polydispersity. Parameter
recovery is achieved by nonlinear
regression with model functions
describing stacking statistics.
Automated versions of the technique
are suited to process and analyse
series of polymers collected in
time-resolved synchrotron radiation
experiments.
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on their one-dimensional correlation function. Utilising
the concept of the correlation function, the considerable
influence of polydispersity on scattering data can
unfortunately only be taken into account in a rudimen-
tary way. Thus, correlation function analysis, in virtually
any practical case, assumes that layer thicknesses in the
lamellar system vary little about an average value [9]. The
consequences of this simplification are documented [10].

A solution to this dilemma has been devised by
Méring and coworkers [11–15]. Their chord distribution
function (CDF) is the second derivative of the
correlation function and it is built from particle size
distributions, which are basic to structural analysis. This
concept was first made applicable for a wide range of
practical problems by the interface distribution function
(IDF), as deduced by Ruland and Stribeck [16–18].

In particular, when attempting to employ the IDF or
the CDF for SAXS analysis, the importance of a
meaningful background separation becomes palpable
[10, 18–21]. In general, various contributions to the
background are superimposed and are difficult to
separate from each other and from the discrete SAXS.
Considering the IDF, g1(x), the mentioned uncertainty
leads to considerable inaccuracy in the vicinity of zero,
where thin lamellae show up. Here the shape of the curve
is affected by the chosen separation of several slowly
varying backgrounds to the SAXS. Because of this
importance to subsequent analysis, the background
elimination procedure chosen should be described clearly.

More and more, the IDF method is used to interpret
the nanostructure inherent to SAXS data [10, 20, 22–38].
Furthermore the volume of data to be analysed is bulging
because of an increasing number of time-resolved
experiments. Thus, there is good reason to define back-
ground subtraction in a manner restricting user interven-
tion and allowing automated processing of series of data
[20]. Here, a novel method of background subtraction for
data from isotropic samples which meets the mentioned
requirements is proposed. It is based on a techniquewhich
has recently been devised for background correction of
anisotropic SAXS patterns with fibre symmetry [39].

Description of the method

The established technique

Let I(s) be the observed isotropic SAXS intensity of a lamellar two-
phase system measured with point focus. Modifications for the case
of line focus, ~II(s), are well known. The magnitude of the scattering
vector is defined by s¼ (2/k)sinh, with k the wavelength of radiation
and 2h the scattering angle. Then a one-dimensional intensity,
I1(s)¼ 2ps2I(s), is obtained by ‘‘Lorentz correction’’. It describes
the scattering arising from electron density changes in the direction
normal to the surfaces of the lamellae. Because I(s) describes a
nonideal [19, 21, 25, 40–42] two-phase system, the one-dimensional
Fourier back transformation,

�G1ðsÞ ¼ F�1 g1ðxÞ½ � ; ð1Þ
of the IDF to be studied, g1(x), is an interference function,

G1ðsÞ ¼ IðsÞ � IFlðsÞ � IRðsÞ½ � s4=F risð Þ
� �

� AP ; ð2Þ

which carries several terms describing deviations from an ideal two-
phase system. These are IFl(s), a background from short-range
density fluctuations throughout the sample, IR(s), a background
from short-range roughness of the domain surfaces, and F(ris), a
deviation of Porod’s law (s4), caused from a finite phase transition
zone at the domain interfaces. AP governs the asymptotic
behaviour of the scattering intensity according to Porod’s law.

Where IFl(s) and IR(s) are concerned, the only assured prediction
says that mainly the even, low-order coefficients of their Taylor
expansion series differ from zero. Thus, these backgrounds are
slowly varying functions in s. Although F(ris) can be defined more
precisely, its effect on the scattering curve varies slowly as well. If the
different effects of non-ideal structure are studied separately after
modelling the background by a Taylor polynomial, consistent
results are achieved in rare cases only [5, 43]. However, after further
restriction to constant fluctuation and roughness backgrounds,
more data sets could be investigated successfully [8, 10, 21].

The proposed technique

In a first step to background subtraction let us define an estimated
constant background, cFl, by minimising the function

Tc cFl;Ap

� �
¼
X
k

s4k Ik � cFlð Þ � AP

� �2
; ð3Þ

with the sum being extended over all measured points in the region
where Porod’s law is estimated to be valid. Then,

IPlðsÞ ¼ s4 IðsÞ � cFl½ � ð4Þ
is computed, which ends in an almost horizontal asymptote, if
Porod’s region is chosen reasonably. Now let us define a low-pass
filter operator, fl,xc(), with a cutoff frequency, xc, defined in real
space. A first-order Butterworth filter,

fl;xc IPlðsÞ½ � ¼ F�1 F IPlðsÞ½ �ðxÞ 1

1þ x=xcð Þ2

 !
; ð5Þ

has proved feasible in many fields of research. The method for
two different scattering curves using a standard cutoff frequency
xc¼ 0.1/smax is demonstrated in Figs. 1 and 2. smax is the upper
limit of the estimated Porod region. In a second step to
background correction now the low-pass filtered background is
subtracted and

G1ðsÞ ¼ IPlðsÞ � fl;xc IPlðsÞ½ �; ð6Þ
the interference function, is obtained. Additionally, in order to
minimise artifacts in the Fourier transformed results from the next
step, the curves are multiplied by a ‘‘Hann’’ function, well known in
the field of digital image processing [44]. Similar functions are
addressed as ‘‘cosine-bell’’, ‘‘Hanning’’ or ‘‘Hamming’’ window.

First, it is pointed out that the effective background correction
function is not a constant anymore. The combination of the two
background correction steps results in a slowly varying background
function in s, as is requested from theoretical consideration.
Although this method appears to be more adapted than the
subtraction of a constant background, it cannot be guaranteed that
the proposed choice is the correct one. So there is, in fact, no relief
where the correct determination of small-sized domains is concerned.
We cannot estimate the validity of the background correction;
therefore, evidence concerning smaller size parameters from SAXS
data remains limited.
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Second, it should be mentioned that in the case of considerable
domain surface roughness, i.e. whenever the integral �G1(s)ds
becomes strongly negative, the background elimination may be
carried out repeatedly, until the postulation �G1(s)ds » 0 is fulfilled.
If such iterated interference functions are analysed, it should be
checked carefully if the substantial aspects of the two-phase
structure have passed the applied cascade of spatial frequency
filters. Most probably such an iteration will erase information on
small and distorted domains.

Tests of the method

Comparison with manual background subtraction

After G1(s) is determined, the inverse of Eq. (1)
demonstrates how to compute the interface distribution
g1(x). Two results for the scattering curve from Fig. 2 are
shown in Fig. 3. The dashed curvewas obtainedmanually
after determining the values of a constant fluctuation
background and a finite phase transition zone. The solid
line was computed automatically after a single spatial
frequency filtering step. It is observed that because of the
increased flexibility of the low-pass filtered background
the solid line IDF starts with a somewhat narrower
positive peak. This makes the residual nanostructure
appear to be somewhat more perfect.

In order to quantify nanostructural data, both curves
were fitted by the model of a one-dimensional stacking
statistics of layers [42, 45]. The results are presented in
Table 1 and show agreement within the range of the
computed intervals of confidence.

Evaluation of layer stack model scattering curves

The last section demonstrated the relative compatibility
between the established method of background subtrac-

tion and the spatial frequency filtering technique. Here
the absolute accuracy of the new method is demon-
strated. For this purpose model scattering curves, I(s), of
layer stacks were computed utilising well-known equa-
tions [35], 5% relative statistical noise was applied and,
finally, the interface distribution function, g1(x), was

Table 1 Comparison of layer stack nanostructure parameters
determined after different kinds of background subtraction. Mean
crystalline and amorphous thicknesses, �ttc and �tta. Relative width
parameters of layer thickness distributions, rc/�ttc and ra/�tta,
respectively

Constant background Low-pass background

�ttc (nm) 3.9±0.2 4.3±0.4
�tta(nm) 2.8±0.1 2.4±0.4
rc/�ttc 0.35±0.05 0.29±0.03
ra/�tta 0.39±0.03 0.44±0.03

Fig. 2 From scattering intensity to interference function by low-pass
filtering of a slit-smeared, ~II(s), scattering curve. Polyethylene sample
which allows separation of fluctuation and interfacial width in the
background

Fig. 3 Two interface distribution functions, g1(x), determined from
one sample after different kinds of background subtraction

Fig. 1 From scattering intensity to interference function by low-pass
filtering. Ultrahigh-molecular-weight polyethylene sample which does
not allow separation of different background components
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determined utilising the spatial filtering algorithm. A
typical result is presented in Table 2. The results show
that only the smaller of the two layer thicknesses (here
�tta) is somewhat overestimated. The other structural
parameters are very close to the parameters predefined
in the model.

The intervals of confidence are computed by the
nonlinear regression algorithm [45, 46]. The small but
significant deviations between model and evaluation
exhibit the effect of background overcorrection.
Similar model evaluations can be performed on a
routine basis using actual models, structural para-
meters, backgrounds and noise whenever the introduc-
tion of methodical error into structural parameter
determination is estimated.

The extreme limit: layer particle scattering

Scattering and analysis of layer stacks have been treated.
Now the case of an ensemble of uncorrelated lamellae is
considered; this does not show interference effects. It is
demonstrated that the method is even suitable to yield
estimated values for the average layer thickness, �ttc, and
the polydispersity, represented by rc/�ttc, although in this
case a fit of a suitable model function on the Lorentz-
corrected scattering curve yields more accurate para-
meters. The limit to be discussed is observed just below
the melting temperature during melting or crystallisation
of a polymer. Owing to missing interference it is
expected that background subtraction by spatial
frequency is most uncertain in this case.

The importance of domain polydispersity in the field
of the nanostructure of polymer materials has been
evidenced by numerous SAXS investigations and by
electron microscopy [47, 48]. It is thus a coarse
approximation to describe the isotropic scattering of an
ensemble of uncorrelated lamellae by the particle
scattering of the average layer, �ttc, [3, 49] only:

IðsÞ ¼ 2AP
sin2 p�ttcsð Þ

s4
: ð7Þ

In some works even more extensive approximations
have been applied which aim at linearisation of the

scattering data [49, 50] in order to simplify determina-
tion of the layer thickness from the scattering data.

In order to consider polydispersity with ensembles
of polymer nanoscale particles, Porod [51] extended a
graphical method proposed by Hosemann, but these
days computer-based evaluation methods [42, 45, 52,
53], which are more powerful and less restrictive,
should be preferred. If the shape of the layer thickness
distributions is modelled by a Gaussian or related
functions [42], computing time is no problem. More
suitable base functions are known [54, 55], but still
require unendurable computing effort. It is easily
deduced [45] that for the assumption of Gaussian
layer thickness distributions Eq. (7) can be extended to
yield

2ps2IðsÞ ¼ I1ðsÞ ¼
W
s2

1� HcðsÞ½ �; ð8Þ

with

HcðsÞ ¼ cos 2p�ttcsð Þ exp �2p2r2cs2
� �

:

The function H(s) is the Fourier transform of the
normalised layer thickness distribution, hc(x), and the
quantity W¼ 2pAP its weight. An ensemble of uncorre-
lated lamellae is completely characterised by these
parameters. From Eq. (8) it is concluded that the
‘‘interference function’’ s2I1(s) contains the ‘‘reciprocal’’
layer thickness distribution in undistorted shape and
thus is, in principal, the most appropriate starting point
for its analysis. Cser’s argument [56] criticising the use of
even the milder Lorentz correction is thus not only based
on obsolete and awkward approximations, but is also
vitiated by mathematical deduction.

For fitting transformed SAXS data, adapted model
functions can easily be derived from Eq. (8). Several
experimental and model data sets were tested and it was
confirmed that fits of I1(s) and s2I1(s) result in accurate
values for structural parameters, whereas the fit on I(s)
ends in considerable uncertainty. The results are
reported in Table 3.

Although the results of fitting s4I(s) are accurate, it
should be considered that background correction for
such data is much more critical than for a Lorentz-
corrected curve. Parameters directly determined from
the measured intensity are inaccurate. Computed
estimated intervals of confidence from nonlinear regres-
sion clearly indicate the problem.

In the last column values are listed which were
obtained after background correction utilising the
low-pass filter, computing the degenerate IDF and
analysing the resulting layer thickness distribution. It
is obvious that a considerable fraction of thin lamellae
from the model were attributed to the background,
resulting in an underestimation of domain polydis-
persity and an overestimation of the average layer
thickness.

Table 2 Test of the spatial frequency filtering method by means of
a model scattering curve (one-dimensional stacking statistics).
Mean crystalline and amorphous thicknesses, �ttc and �tta. Relative
width parameters of layer thickness distributions, rc/�ttc and ra/�tta,
respectively

Model parameters Evaluated parameters

�ttc(nm) 80 80.5±0.1
�tta(nm) 40 41.7±0.1
rc/�ttc 0.2 0.206±0.001
ra/�tta 0.4 0.391±0.004
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Conclusion

The method of SAXS background subtraction by low-
pass filtering allows one to evaluate series of scattering
curves automatically. The remaining curve contains a
substantial fraction of topological information on the
system. Some inaccuracy with the determination of small
layer thicknesses related to any background determina-

tion has been demonstrated in different ways. Despite
certain restrictions for the analysis of uncorrelated
particles, this method appears well suited to investigate
variations of nanostructure of polymer materials on
strain or temperature by time-resolved SAXS. Thus, it is
expected to become a valuable tool to elucidate structure-
forming processes as well as the relation between
structure and properties of polymer materials.

Table 3 Comparison of methods for the determination of struc-
tural parameters of lamellar two-phase systems in the limiting case
of uncorrelated lamellae. Estimate of quality by evaluation of a
noisy (5% relative noise) model scattering curve based on point-

focus scattering intensity, I(s), Lorentz-corrected intensity, s2I(s),
interference function, s4I(s), and by evaluation of the degenerate
interface distribution function, g1(x)

Background correction Model
No

IðsÞ
No

s2IðsÞ
No

s4IðsÞ
No

g1ðxÞ
Yes

W 1 0.82±0.13 0.99±0.01 0.99±0.01 0.94±0.07
�ttc 70 85±11 71±1 71±1 80±1
rc/�ttc 0.5 0.25±0.15 0.48±0.02 0.48±0.02 0.42±0.01
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13. Méring J, Tchoubar D, Schiller C
(1967) Bull Soc Fr Mineral Cristallogr
40:436–444
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