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Full Paper: In part 1 of this series results of an in-situ small-
angle X-ray scattering (SAXS) study of polyethylene crystal-
lization are presented. They show that crystallite placement is
basically a random process, from which some order is grow-
ing. This paper presents a first survey concerning the required
change of paradigm.

No distortion of a lattice is to be studied, but order grown
on the nanometer scale must be distinguished from the stochas-
tic case, i.e. the “car parking problem” from the field of ran-
dom sequential adsorption (RSA). RSA is explored by com-
puter simulation. The results concerning the corresponding
liquid scattering are required to identify short-range order (cf.
part 3). Processing of simulated scattering patterns verifies that
the features of quasi-random arrangement are preserved in the
interface distribution function (IDF), if only the crystals are
shielded by some transition layer.

In a condensed random nanostructure almost only next
neighbor correlations are present. The distribution of the
widths of amorphous gaps between the crystals,

���
, is a trun-

cated exponential distribution. In the scattering pattern the
stochastic nanostructure can hardly be distinguished from a
system with short-range order. On the other hand, in the IDF
the features of order become clear. In random systems there
is no convolution polynomial based on crystalline and amor-

phous distributions. Only two shifted images of
� �

are occur-
ring. We find that packing correlations collapse, if the crys-
tallite thickness distribution is wide enough. In this case the
pure particle scattering is a fair approximation in the IDF. This
criterion is, in general, valid for technical polymer materials.
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IDFs �����	��
 computed from the nanostructure obtained
in a computer simulation of ideal random isothermal
crystallization after infinite time (random car parking
process). Bold line: No transition zone. Thin line:
Transition zone introduced ( �
���� �
���� �� ��� �� ������� � ).
Dashed-dotted: A Gaussian crystalline layer thickness
distribution with a standard deviation of � ������� � .
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Introduction

The results of an in-situ SAXS study presented in part 1[1]

of this series of papers on the crystallization of polyethylene
show, that crystallization resembles the frequently studied pro-
cess of random car parking.[2] Crystallite insertion on the shish
(parking lane) is more or less random. Thus one should aban-
don the notion of a distortion of order (distorted lattice). In-
stead, the question is arising how a certain amount of order
is accruing in face of a predominantly stochastic process. In
other words, the formation of “lamellar stacks”[3] or “paracrys-
tals”[4, 5] appears to be a second order process that only locally

is breaking the random character of crystallite placement. Be-
fore we start to see into this phenomenon by analysis of scatter-
ing data (part 3), we first try to describe the ideal random pro-
cess and its effects on nanostructure, small-angle X-ray scat-
tering (SAXS) and the evaluation of scattering data.

Since Zernike and Prins[6] the scattering from particle sys-
tems with distorted order is studied. If the distortion grows
exceedingly, order is vanishing. The particles are placed at ran-
dom. If such or similar systems are studied, it is incorrect to
describe them using notions valid for the description of lattice
structures. Already Debye and Menke[7] moan that because of
poor knowledge on liquids on one hand, but the perspicuous
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theory of crystallography on the other, scientists become at-
tracted to draw conclusions concerning structure based on the
positions of interference maxima only.

Random placement does not necessarily mean that all
phase relations among the particles are extinguished and we
observe pure particle scattering. In practice, frequently broad
maxima are observed and addressed by the term “liquid scat-
tering”. There is no such halo for some stochastic systems
constructed by Porod,[8] but in distorted lattices considered by
Hosemann[9, 10] liquid scattering is found. Now the question
arises, if the observation of liquid scattering is necessarily go-
ing along with some rest of order, or if even a pure random pro-
cess may generate liquid scattering behavior, if only the artifi-
cial construction of the early Porod model is abandoned. This
question is of vital importance for the quantitative analysis of
time-resolved SAXS studies of poorly ordered nanostructures.
Only if the effect of those correlations that are enforced by
dense packing can be considered and subtracted if necessary,
an order generating process in the course of nanostructure for-
mation can be detected and identified.

Since the early days of statistical physics the problems of
liquid scattering has intensively been studied. To date both
several approximations and some closed form solutions are
known. Most frequently applied[11–16] is the Percus-Yevick[17]

approximation of the Ornstein-Zernike integral equation. It of-
fers a simple description of the scattering generated from sys-
tems with short-range order. Nevertheless, its basic modeling
is a coarse approximation[18] only, based on a notion of liquid
scattering that does not really cover the process observed in the
experiment.

For isothermal crystallization the definition of the ideal
random process is obvious, if crystalline domains (kebab) are
growing on a backbone (shish): Crystal lamellae are generated
at random positions on the shish. The process is continued,
until the last gap of sufficient size is filled by a crystal (“jam-
ming limit”). For lamellae of uniform thickness this process is
known as the “car parking problem”, one of the many prob-
lems discussed in the field of random sequential adsorption
(RSA).[2] For the ideal case the correlation function describ-
ing the statistical arrangement of uniform lamellae has been
derived in closed form by Bonnier, Boyer and Viot.[18]

Theoretical

General considerations

Uniform crystals in one dimension. Let us consider an
isothermal crystallization process of polymers starting from
random places on a backbone (shish), during which only crys-
tallites of uniform thickness are generated. Let the crystal-
lite thickness, �� � � �
������ , be exactly �
�� monomer units (ideal
isothermal crystallization) with ��� the length of one monomer.
Thus the crystal thickness distribution,

� � � 
 
 ��� � 
�� �
�� 
 is
a � –distribution.

Random packing and truncated amorphous thickness dis-
tribution. In the beginning of random crystallization along a
shish, the distances between crystals are uniformly distributed,
but in the course of time the number of places is decreasing,
at which another crystal can develop. Finally, all the gaps that
would have room for a crystal are occupied, and the distribu-
tion of amorphous thicknesses,

� � � �
	 
 , has developed from a
constant to a random variable defined over a finite interval, a
truncated probability distribution.[19, 20]

Questions to be answered. Here several questions arise.
How does this distribution look like? Does it imprint corre-
lations among the domains? Which is the natural volume crys-
tallinity, �
���� , of ideal random isothermal crystallization? In
the literature of applied mathematics that is dealing with the
development of truncated distributions in the case of iterated
stochastic processes in several fields of science,[19–22] several
heuristic descriptions can be found. It is frequently reported
that the emerging distributions are from the class of exponen-
tial functions.

Answers from statistical mathematics and physics. In sta-
tistical mathematics and physics the ideal random process de-
scribed above is known as the “car parking problem”.[2] Its
kinetics and some of its properties has first been studied by
Rényi[23](translated[24]). For example, the natural volume crys-
tallinity

� ���� � ��� ������
��� � � � ��� ���� � ���
� � � ��
� � ��� � � � � � �"!
�$#&%'�(% �
(1)

of the “jammed state” is known as the Rényi limit. It says that
if 75% of the length of a parking lane are filled by cars parked
randomly, there will be no more space to put another. A re-
view concerning theory and applications in the corresponding
fields of random sequential adsorption (RSA) and cooperative
sequential adsorption (CSA) has been published by Evans.[2]

For the car parking statistics Bonnier, Boyer and Viot[18] have
deduced both the correlation function and the static structure
factor in closed form. Nevertheless, the equations given by
them are infinite series of nested integrals that, to the best
of our knowledge, require considerable computational effort.
Moreover, the practically relevant case of a broad crystallite
thickness distribution is not covered.

Description of the stochastic process

If, for the random crystallization, we intend to acquire a heuris-
tic description of

� � � �
	 
 , we need an experiment under ideal
conditions. Such ideal conditions can be provided in a com-
puter simulation[25] of one-dimensional, ideal, and isothermal
crystallization. Here we assume that the crystallite thicknesses
are quantized by the monomer lengths of the polymer chains.
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Then, in a series of computer simulations, we determine the
arrangement of the crystals on a shish after a very long crys-
tallization time. The crystallite thickness, �� � � � � �
 � is varied
in integer steps of the number of monomers, �
 � � � ��� � � � � � � � � ,straddling the lamella.

Computer simulation technique. Random numbers are
generated by means of the pseudo random number generator
of Borland Pascal 7.0, the quality of which is improved by ran-
dom shuffling.[26, 27] Using the generator in a loop, random
numbers are generated, which represent crystallite positions
on a shish. If there is room for the crystal at that position, a
crystal record is generated and inserted into a circular list. At
any time this list represents the shish and the crystals existing.
As long as all the crystal sizes are identical, this process is sta-
ble and stops when the jamming limit is reached. Because of
the computing speed available to date, the transformations de-
scribed in the paper of Burgos and Bonadeo[25] are no longer
required.

Gaussian crystallite thickness distributions are generated
by channeling our uniform random numbers through the Box-
Muller transform.[28, 29] Here a fundamental problem becomes
obvious: as soon as the shish is sufficiently structured, thin
crystallites are more easily inserted than thick ones, and in the
course of time the crystal fraction is drifting towards 1. In ad-
dition, Gaussians are problematic to use because of their wide
tails. We have prohibited the creation of crystallites with neg-
ative thickness and have stopped the corresponding simulation
after a crystallinity of 65% was reached.

The computer program is compiled under Linux in order to
take advantage of its superior memory management. The list
of crystals and the huge array for the IDF require an extended
heap of 40 MB size. With about 20000 crystals generated on a
shish offering room for 32000 crystals, a typical run is finished
after 10 min.

The amorphous thickness distribution. For the distribution
of the amorphous thicknesses,

���
, we find by fitting to the re-

sults of the computer simulations

��� �	��
 � �� ���
� � � ��	��
 �
� � ��� � � � � 
 � (2)

with � � � 	 � �� � . Postulating � ��� �	��
 � � � � as we have im-
plicitly done for the crystallite thickness distribution, then it
follows � � % � ���
� � � � � � 
 � � 
 ��� �� ��� � �'� � � � � � 
 � (3)

and the center of gravity of
� � � ��
 is

� � � � ��
�� � ! � 	�� ��� � � � # ! � � ��� � � � � �'� � � � � � 
 
� � � � � � � � � � � ���
� � � � � � 
 
 
 �
(4)

The ultimate statistical crystallinity. The ultimate crys-
tallinity �
���� (i.e. the maximum crystallinity achieved for the
case of ideal random crystallization from crystals of uniform
thickness after infinite time) is

� ���� � �� � � � � � ��
�� � � � �"! � (5)

a value very close to the theoretical Rényi limit (Equation 1
and[2, 24]). Because of the quantization of the crystallite thick-
nesses this ultimate value is only reached for very thick lamel-
lae (cf. Figure 1).
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Figure 1: The limiting volume crystallinity of statistical
isothermal crystallization, � ����� � � 
 
 , as a function of the crys-
tallite thickness, 
 , measured in monomer units (logarithmic
scale). Data resulting from computer simulations.
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Figure 2: IDF �����	��
 computed from the nanostructure ob-
tained in a computer simulation (ideal isothermal crystalliza-
tion for infinite time). Curves are normalized to represent
the scattering effect of 1 lamella of electron density con-
trast 1 ( � � � � � � � � � � ). Bold line: No transition
zone.

� � � � �!��� � crystals of thickness �
 � � # � : monomer
units grown on a shish of length 16000*50 until there was
no more room for new crystals. Volume crystallinity � ��� �
� ��� � � � � � � � � ����� � ! . Thin line: Transition zone introduced
( �
 � � �
 � � �� � � �� � � � � � ). Dashed-dotted: A Gaussian crys-
talline layer thickness distribution with a standard deviation of
� � � � � � .
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Correlations after random packing of uniform crystals.
Now that we know the distance distribution

���
of amorphous

layers, we could further on adhere to Hermans’s[3] model de-
veloped by distorting a perfect periodical structure, assume
that all distances are statistically independent of each other,
and generate the infinite series of distance distributions, a con-
volution polynomial. The superposition of all the contributions
generated in this manner would be an IDF, � ��� �
	 
 .

Nevertheless, for a stochastic system we are extremely far
from an ordered system. So we should be cautious and com-
pute ��� � �
	 
 from the exact solution[18] or from the nanostruc-
ture generated in our simulations directly using the positions
of the crystals on the shish. For this purpose we mark each
left edge of a crystal on the shish by a 1, each right edge by a
-1. Finally, from the series of � -distributions developed in this
way we compute the autocorrelation. Three of the results are
demonstrated in Figure 2.

In the figure (cf. as well Hosemann,[10] Figure 3) the IDF
is plotted as a function of the relative crystallite thickness, � ,
and normalized to the scattering effect of a single lamella. The
bold line shows the result for a case, in which no transition
zone (

� � � � ) to the left and to the right of the lamella is as-
sumed. Thus crystallites can be put arbitrarily close to each
other. The thin line demonstrates a case, in which 20% of the
crystallite thickness are declared inaccessible around the crys-
tal (

� ��� �� � � ��� � ). This becomes physically meaningful, if we
furnish a transition layer[30, 31] in this gap, in which the density
slowly drops to the density of the amorphous phase.

In the dilute system, only the � -function of the crystallite
thickness distribution would be observed at � � � . The simu-
lation demonstrates, however, that in the concentrated system
additional terms arise in � � � ��
 , which cause liquid scattering.
These terms shall be denoted “packing correlation”. The pack-
ing correlation has several characteristics:

1. Packing correlation is shifted by
� ��� �� � , if a transition

layer is considered.

2. Packing correlation is of extremely short range. For dis-
tances ��� � � � � it vanishes even along the crowded
backbone.

3. If the crystal thicknesses are no longer uniform (dashed-
dotted curve), the packing correlation is strongly atten-
uated. The positive correlation peak to the right of the
long period peak vanishes already, if the width of the
crystallite thickness distribution is relatively narrow.

4. In the scattering pattern packing correlation causes a
strong maximum (“long period peak”) and a series of
undulations, which at least become visible in a plot that
linearizes Porod’s law (this property is demonstrated be-
low in Figure 4).

The terms of packing correlation. Essentially left of the � –
peak describing the

� � –distribution we recognize in each case

the truncated exponential distribution of the amorphous gaps,��� �	� � � � � �� � 
 . The negative peak to the right of the
� � –peak

is caused from the long periods
��� � ��
 � ��� � �	��
 , (i.e. the dis-

tance from the end of a crystal to the end of its neighbor). Be-
cause the crystallite thickness distribution is ideal, here the dis-
tribution of the amorphous thicknesses is replicated (

��� � ��
 �� � � � � � � � � � �� �(� � 
 ). The factor 2 arises, because the dis-
tances from the beginning of a crystal to the beginning of its
neighbor are subjected to the same statistics. Even further to
the right we, again, find an image of the

� �
–distribution. It is

caused from the sandwiches made from two crystallites and an
amorphous layer in between,

� � � � � ��
 � � � �	� � � � � �� �(� � 
 .
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Figure 3: Random packing of uniform crystallites without in-
terfacial layer. Sketch of the low-order distance distributions,��� �	��
 which form an IDF � � �	��
 . � � �
	 � �� � , and �� � : crystal
thickness

No convolution polynomial. For clarity, Figure 3 shows the
components separately for the simple case of a shish that is
randomly and fully (

� � � � ) laden with uniform crystals. In
addition, the sketch shows a distribution

��� � � (dotted line).
For this example

��� � � is the first distribution that, according
to the notion of distorted order,[3] is computed by convolu-
tion (

� � � � � � ��� � �
). Comparison with the IDFs from the

ideal random crystallization (Figure 2) readily exhibits that a a
triplet distribution

� � � � is much weaker as it would have to be
if it were constructed by convolution.

Thus, on the crowded stochastic shish the crystalline lamel-
lae sense nothing but their direct neighbors. Beyond that only
a very weak and unspecifically fading signal is observed. As
a result, the stochastic system is rather clearly distinguished
from its packing correlation in the IDF. In the scattering pattern
distinction is more difficult, but there is an example published
in the literature where extremely low correlation among lamel-
lae with clusters of less than two members has been deduced
from direct analysis of scattering curves.[32]
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A possibility to determine the width of the transition zone?
It is worth to be noted that the width of the transition zone at
the edges of the lamellae has a strong effect on the ultimate
packing crystallinity (i.e. Rényi’s limit). For

� � � � one read-
ily obtains � ��� � � � � � � � � , with the number of generated crys-
tals,

� � , and the length of the shish,
� � ��� � � �� � , measured

in units of the thickness of the crystalline lamellae. For the
ultimate crystallinity with uniform crystals having a transition
zone (

� � � � ) it follows

� ��� � � ����� �
� � � � � �� � � (6)

Thus, as long as only crystals of uniform thickness are gener-
ated during random crystallization, the transition layer thick-
ness

� � is coupled to the measured crystallinity and the crystal-
lite thickness as measured in monomer units (Figure 1).

However, as soon as a Gaussian crystallite thickness distri-
bution is considered, the amorphous gaps can be filled so well
with small crystals in the computer simulation that both the
shape of the crystal thickness distribution found on the shish is
changing and Equation 6 is no longer valid.
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Figure 4: Interference functions, � � ��� 	 
 , for the random
placement of layers of thickness 1 on a shish (normalized to
the scattering effect of 1 layer with � � � � ). Dotted curve:
For sparse population on the shish. Bold solid line: For the
densely packed system after infinite isothermal crystallization.
Thin solid line: For the packed system, now assuming that
each layer is enclosed in a transition layer of 20% the crystal-
lite thickness. Dot-dash-dotted: Lamellae from a broad layer
thickness distribution randomly packed.

From the simulated nanostructure to the scatter-
ing pattern

The interference function. After having studied the influ-
ence of packing correlation to the interface distribution func-
tion it appears meaningful to compare the related scattering
curves to the scattering of the dilute system. Let � � �"	 , and
let us consider the case, in which the IDF � � � �
	 
 in meridional
direction of a multidimensional scattering pattern is studied.

Then the negative Fourier transform of the IDF is the one-
dimensional interference function � � ��� 	 
 ,[33] which differs
from the static structure factor discussed by Bonnier, Boyer
and Viot[18] by only a constant. Subjecting the examples of
Figure 2 to the transformation, we yield the results shown in
Figure 4.

Not long period maxima, but form factor minima char-
acterize a packed random system. The dilute system of
lamellae placed randomly (dotted curves) shows the expected
harmonic curve � � ��� 	 
 � ���	��
 � � � �� � � 	 
 with �� � � � . Af-
ter crowding the shish with lamellae (bold solid line), packing
correlation leads to a different interference function. Again
considerable changes are found, if the crystal lamellae are
wrapped in a transition zone (thin solid line).

For uniform lamellae at high orders all the interference
functions become identical and show that the placement is, in-
deed, random. Nevertheless, in experimental SAXS data this
information is inaccessible, because noise and the practical
variation of crystal thickness suppress this information (dot-
dash-dotted line).

On the other hand, in the accessible region peak shapes
and positions are changing as a function of packing density. If
we adopt the paradigm of distorted order and analyze SAXS
curves of systems with predominantly random nanostructure,
we will presumably discuss shapes and positions of peaks.
Then we will hardly retrieve meaningful results. On the other
hand, the model calculations demonstrate that the particle fac-
tor minima are preserved – as long as no crystallite size dis-
tribution must be considered (dot-dash-dotted line). The in-
terference function obtained in the simulation for non-uniform
crystal thicknesses is similar to data frequently reported in ex-
perimental SAXS studies. From the inclination of the linear
region (Porod’s law, � � � 	 � � ) the transition layer thickness� � is retrieved.
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 , for random placement of ! � � crystallites with with� � � � on a shish. Note the positions of the minima and the
varying strength of the oscillations.



1006 Macromol. Chem. Phys. 2004 , 205(?), ???-???

The scattering patterns. Now, from the interference func-
tions, the scattering curves projected on the meridian,


 � � � � � 	 
 � � ! � � � �	���� � ��� � ��� 	 
 � � 

are computed. These functions are the Lorentz-corrected scat-
tering curves of an isotropic lamellar system. Thus the con-
nection of these considerations to an experiment is made,
in which the nanostructure of an uniaxially highly oriented
semicrystalline sample is studied by means of SAXS and a
two-dimensional detector. A selection of the scattering curves
expected for random placement of lamellae is shown in Fig-
ure 5.

The observation of peaks in the presented scattering curves
of the condensed systems is not related to order. As already
stated by Hosemann,[10] an emerging long period in a stochas-
tic system only indicates the transition from a diluted to a con-
centrated system. If, moreover, a broad crystallite size distri-
bution is considered, we find a scattering curve with a peak but
without particle factor minima. Similar curves are reported in
many SAXS studies.
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Figure 6: Comparison of original IDFs used to generate simu-
lated scattering curves (noisy data) and the results of data anal-
ysis (smooth curves). Average crystalline thickness, �� � � � .
No transition layer.

Data evaluation of simulated scattering curves

For the evaluation of scattering data we utilize our method of
spatial frequency filtering[34, 35] and retrieve the nanostructure
information as a CDF or an IDF. If we work with scattering
patterns of nanostructures with a certain amount of order, we
know that our method is able to extract the requested topolog-
ical information with high accuracy.

If now we start to evaluate stochastic nanostructures we
need to check the efficiency of the procedure for such struc-
tures as well. For this purpose we have, first, applied typi-
cal experimental noise to the scattering curves computed from
the simulated stochastic structures. Afterwards we have eval-
uated these curves in exactly the same way as the data from

our crystallization experiments.[1, 36] By comparison with the
input data we then can estimate how careful nanostructure in-
formation is treated by the evaluation method. The results for
crystals put on the shish without a transition layer are shown
in Figure 6.

The reproducibility of the structure information (noisy
data) after analysis (smooth curves) is not sufficient. The rea-
son for this result is the fact that the distribution

� �
of the amor-

phous gaps does not vanish at �"	 � � . As a consequence, the
spatial frequency filter assigns part of

� �
to the diffuse back-

ground scattering and removes it. If, on the other hand, a tran-
sition zone

� � � � is present, the nanostructure information is
well preserved (Figure 7).
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Figure 7: Comparison of original IDFs used to generate simu-
lated scattering curves (noisy data) and the results of data anal-
ysis (smooth curves). Average crystalline thickness, �� � � � .
Transition zone width

� � � � � �
Because we can usually assume that a transition zone is

present, the conditions shown in Figure 7 are close to the com-
mon situation. Here only the narrow crystallite thickness dis-
tribution ( � � � ��� � ) is broadened in the analysis. In the study
of technical polymer products such narrow distributions will
hardly appear. If, on the other hand, materials with extremely
narrow molecular mass distributions or in extreme states are
studied, one should be aware of the limits of established data
evaluation technique.

Modeling the random crystallization with broad
crystallite thickness distribution

Figure 7 as well shows that upon introduction of broad crys-
tal thickness distributions the related packing correlations are
virtually collapsing. A mathematical description for this phe-
nomenon was not found. Nevertheless, some considerations
shall be indicated. Already a small rise in relative standard
deviation to � � � results in loss of the exponential character of
the

� �
–distribution. We only observe a diffusely truncated,

almost uniform distribution
� � � ��
�� � � � � � � � � � � � � � .With such a model we can fit the initial part of our curves suf-

ficiently well. The problem arises from the other two distri-
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butions which contribute to packing correlation. Bearing in
mind established notions, one may define these distributions
by convolutions

��� � � � � ��� � � � and
� � � � � � � � � � � � � ,

respectively. Moreover, since crystal positioning is at random,
an undisturbed superposition of random shishs with each a uni-
form crystallite thickness could be accepted (and modeled by
Mellin convolution[37]). Neither these ideas nor their combi-
nation are able to describe the observed collapse of correla-
tion found in the simulated random shish with wide crystallite
thickness distribution. On the other hand, just this consider-
able collapse of correlations helps to establish a simple analy-
sis procedure.

Negligibility of packing correlations. In Figure 7 for both
the narrow crystallite thickness distributions packing correla-
tions are clearly discernible, whereas they are only weak for
the random nanostructure with � � � � � � . Thus, for � ��� � � �
the correlations arising from liquid scattering are almost neg-
ligible as compared to the particle factor represented by the
crystallite thickness distribution

� � . Hosemann[10] deduces a
similar result for the three-dimensional case. According to his
work liquid scattering is negligible for

��� ���
	 �

Hosemann defines ��� � � � � �� � , and his packing density � is
our crystallinity � ��� on the shish.

Form factor fitting. Technical polymer materials show, in
general, no crystal thickness distributions with relative stan-
dard deviations below ��� � . So we have fitted the critical ran-
dom shish scattering using the pure form factor and an infinite
stack that was supplied in order to swallow remnant packing
correlations. The result is shown in Table 1.

Table 1: Fits of packing correlation with the form factor of
the ensemble of crystalline lamellae. Parameters are the stan-
dard deviation, � � , of the crystallite thickness distribution, the
mean crystal thickness, �� � , and the number fraction of lamellae
in the uncorrelated shish. The column labeled “in” shows the
input parameters for the simulation of the nanostructure, “out”
shows the result of the simple form factor fit.

in out

� � 0.3 0.28�� � 1 1.00
�

1 0.72

in out

� � 0.4 0.39�� � 1 0.96
�

1 0.74

Obviously, the structural parameters are reproduced in the fit.
On the other hand, because of the remnant liquid scattering a
small fraction of the random crystals still is considered corre-
lated.

Conclusions

We have learned that the crystallization of domains (kebab),
randomly placed on a backbone (shish), always lead to packing
correlation, if the system can not be considered diluted. Nanos-
tructured polymer materials are, in general, concentrated sys-
tems. If for such materials the scattering intensity (projected
on the meridian) is considered, it is difficult to discriminate,
if the observed long period peaks result from distorted order
(stack, lattice) or are nothing but liquid scattering. If the po-
sitions of peak maxima cannot easily be reduced to multiples
of a first order, but the positions of minima can, this is indica-
tive for packing correlation and liquid scattering. In this case
the position of the first minimum is the inverse of the average
crystallite thickness, and the crystallite thicknesses are nearly
uniform.

In the IDF, on the other hand, ordered placement is clearly
distinguished from mere packing correlation. If a narrow crys-
tal thickness distribution peak is observed, packing correlation
is dying out within the range of triple the room required for the
placement of a crystal (in terms of RSA: “required for parking
a car”). Every oscillation beyond this point indicates ordered
placement. If the first maximum in the IDF is broad, already
a positive peak to the right of the negative “long period peak”
indicates a fraction of crystals that are placed by some ordering
process.

The analysis of simulated scattering data from stochastic
systems shows that caution is required if samples with nar-
row crystallite thickness distributions shall be analyzed. For
technical materials with sufficiently broad crystallite thickness
distributions and shielding by a transition zone the established
data analysis methods appear to be sufficiently accurate.
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Synopsis. It is no use to interpret nanostructure data in terms of perfect order, if nature places crystalline lamellae preferentially
at random positions. Instead, order generating processes are to be identified in a chaos, which unfortunately generates discrete
scattering simply by packing the crystallites (car parking problem). The properties of the corresponding correlation among the
crystallites are explored by computer simulation.


