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This study extends a mathematical concept for the description of heterogeneity

and polydispersity in the structure of materials to multiple dimensions. In one

dimension, the description of heterogeneity by means of Mellin convolution is

well known. In several papers by the author, the method has been applied to the

analysis of data from materials with one-dimensional structure (layer stacks or

fibrils along their principal axis). According to this concept, heterogeneous

structures built from polydisperse ensembles of structural units are advanta-

geously described by the Mellin convolution of a representative template

structure with the size distribution of the templates. Hence, the polydisperse

ensemble of similar structural units is generated by superposition of dilated

templates. This approach is particularly attractive considering the advantageous

mathematical properties enjoyed by the Mellin convolution. Thus, average

particle size, and width and skewness of the particle size distribution can be

determined from scattering data without the need to model the size distributions

themselves. The present theoretical treatment demonstrates that the concept is

generally extensible to dilation in multiple dimensions. Moreover, in an

analogous manner, a representative cluster of correlated particles (e.g. layer

stacks or microfibrils) can be considered as a template on a higher level.

Polydispersity of such clusters is, again, described by subjecting the template

structure to the generalized Mellin convolution. The proposed theory leads to a

simple pathway for the quantitative determination of polydispersity and

heterogeneity parameters. Consistency with the established theoretical

approach of polydispersity in scattering theory is demonstrated. The method

is applied to the best advantage in the field of soft condensed matter when

anisotropic nanostructured materials are to be characterized by means of small-

angle scattering (SAXS, USAXS, SANS).

1. Introduction

While a cohesive theory of scattering from polydisperse

structure remains elusive, the mathematical concept of

diffraction is well established: space is filled with matter by

arrangement of identical structural units on the places defined

by an abstract lattice. Mathematically, this procedure is

realised by the translation operation inherent to the convo-

lution integral. The result is an ideal lattice structure.

In a less ideal material, frequently many different but

similar structural units can be found. This is the common

notion of polydispersity (Higgins & Stein, 1978; Hosemann,

1950; Greschner, 1973; Glatter, 1980; Cohen & Thomas, 1987;

Förster & Burger, 1998; Rieker et al., 1999; Pedersen et al.,

2000; Keum et al., 2005; Triolo et al., 2005; Ruland & Smarsly,

2005). In the present work, polydispersity means that every

structural unit in the sample is generated from a mean

template by affine compression or expansion (dilatation). This

building principle is mathematically governed by the Mellin

convolution (cf. Appendix A), which splits the observed

structure into a template structure and a size distribution. The

determination of such ‘domain’ size distributions is a major

goal in the area of materials science. Considering the more

simple case of pure particle scattering, the sought size distri-

bution is the particle dimension distribution (Fedorova &

Schmidt, 1978). If, for example, the studied particles are

spheres, the number distribution of sphere diameters would be

of interest, and the material would advantageously be char-

acterized by the mean diameter and the variance of the sphere

diameters. Moreover, even a parameter value describing the

skewness of the sphere diameter distribution may become

important in order to understand property variations in

materials.

In experimental X-ray studies of special polymer materials,

our group has been determining parameters of heterogeneous

structure for several years. The corresponding methods are

based on a simple concept of Mellin convolution theory valid

in one dimension. Frequently, highly oriented materials have

electronic reprint



been investigated for which a one-dimensional sequence of

lamellae (Stribeck et al., 2003, 2004; Stribeck, 2004) or of

domains in fibrils (Stribeck et al., 1997) is described by a

representative one-dimensional ‘paracrystal’. Dilated images

of such templates are considered to generate the observed

heterogeneous structure. Moreover, the simple concept has

been applied to experimental studies of isotropic lamellar

systems (Stribeck, 1993b; Stribeck & Buchner, 1997; Flores et

al., 2001; Garcia-Gutierrez et al., 2001; Wang et al., 2002) or

even to a material with diffuse particle scattering (Stribeck,

1999). In the present treatment, the concept is generalized to

cover multi-dimensional multi-level dilation of a template

structure. From the practical point of view, this generalization

means that any reasonable kind of structure heterogeneity

which may be detectable in anisotropic experimental scat-

tering data can be described by the proposed general mathe-

matical concept. An example is a complex nanostructure built

from lamellae, in which both layer thickness and layer

extension are polydisperse and, in addition, the ‘clusters’ of

correlated lamellae themselves are only similar. The last-

mentioned heterogeneity is identical to the classical notion of

strain broadening. An approximative solution of this problem

is the well known Warren–Averbach method (Warren &

Averbach, 1950) that is restricted to the description of small

heterogeneity.

In the theory of diffraction, heterogeneity was first

discussed by Dehlinger & Kochendörfer (1939) and Kochen-

dörfer (1944). As Kochendörfer was studying local tension in

rolled copper material, he introduced ensembles of only

similar lattices in order to describe the result of varying

expansion or compression of crystal grains on the diffraction

pattern. At the same time, Hosemann (1939) addressed the

effect of polydispersity on the particle scattering of spheres.

Besides Glatter’s method of direct inversion (Glatter, 1980),

there have been several proposals to solve the problem

analytically (Roess, 1946; Greschner, 1973; Schmidt & Brill,

1967). Before Stribeck (1993b) studied the mathematical

properties of the related integral transform in the special case

of a one-dimensional two-phase structure, Roess (1946) and

Schmidt & Brill (1967) came rather close to a Mellin convo-

lution approach. Subsequently, several suggestions concerning

a method to determine particle size distributions from scat-

tering data were published, which were reviewed by Fedorova

& Schmidt (1978) before they proposed an advanced method.

Nevertheless, their proposed generalization was restricted to

particles with a special contrast profile; thus, the goal of a

cohesive theory of polydispersity was not reached.

2. Theory

2.1. The scattering of different similar ‘particles’

Let us start with a generalization of the treatment on

polydispersity given by Schmidt & Brill (1967). The sample

contains an ensemble of independently scattering structural

units which are similar to one another, i.e. they can be

generated by scaling a template which is characterized by its

excess electron density ~��T rð Þ ¼ �T rð Þ � �h iV. Here �T rð Þ is the

density distribution of the template and �h iV is the average

density of the sample averaged over the volume V that is

irradiated by the primary beam. The template may be any

structure, in particular some single particle or an ensemble of

particles with correlation among them. According to basic

scattering theory, the scattering pattern of the template may

be constructed in two steps. In the first step, its correlation

function ~���2T rð Þ is computed. The autocorrelation, because of

its definition,

h�2 rð Þ ¼
Z1
�1

h yð Þ h r þ yð Þ d3y

¼ h rð Þ � h �rð Þ;
can be determined analytically by simple geometrical

reasoning (e.g. Schmidt, 1995) for many particles with homo-

geneous density. The operator � in the second line denotes the

ordinary convolution. In the second step, the scattering

intensity

IT sð Þ ¼
Z1
�1

~���2T rð Þ exp �2�i rsð Þ d3r

:¼F ~���2T ðrÞ
� �

sð Þ
is computed by Fourier transformation Fð Þ of ~���2T rð Þ. Let us

now consider a structural unit

~��u rð Þ ¼ ~��T

r

a

� �
ð1Þ

which is dilated by a scaling vector a 2 R3
þ with respect to the

template. In Cartesian coordinates a ¼ a1; a2; a3ð Þ, this means

that all components ai 2 0;1ð Þ are positive, and

r=a :¼ r1=a1; r2=a2; r3=a3ð Þ. Thus we follow the notation

conventions of Brychkov et al. (1992) (cf. Appendix A).

The deduction of the corresponding scattering intensity

does not require indirect reasoning (cf. Guinier & Fournet,

1955; Glatter & Kratky, 1982), but is readily established

utilizing two basic theorems of Fourier transformation theory

concerning dilatation {in one dimension: F a H asð Þ½ � ¼ h r=að Þ}
and convolution [F g � hð Þ ¼ G H]. Thus, in Cartesian coor-

dinates and with the definition a � s :¼ a1s1; a2ss; a3s3ð Þ 2 R3,

Iu sð Þ ¼ a2
1 a2

2 a2
3 IT a � sð Þ ð2Þ

is the scattering intensity of the dilated template. The template

may as well be one of the simple homogeneous particles

discussed in text books. In particular for the isotropic case with

ai ¼ a 8 i 2 1; 2; 3½ �, we obtain the well known result (Schmidt

& Brill, 1967)

Iu sð Þ ¼ a6 IT asð Þ; ð3Þ
which is frequently cited when the meaning of the Guinier

radius of a polydisperse material is discussed by referring to

the unpleasant distorting multiplication by a high power of the

scaling factor. Also easily established are the less distorting

effects of uniaxial dilation (a1 ¼ a2 ¼ 1, a3 ¼ a) and lateral

dilation (a1 ¼ a2 ¼ a, a3 ¼ 1) on the scattering intensity of the
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dilated particle. The cases of isotropic, lateral and uniaxial

dilatation are the most important ones in the area of poly-

disperse structure.

2.2. Scattering and correlation function of the polydisperse

material

There shall be no correlation among different structural

units. Thus, the observed correlation function of the material,

~���2 rð Þ ¼
Z
R

3
þ

hH að Þ ~���2T

r

a

� �
d3a; ð4Þ

is a superposition of dilated correlation functions with hH að Þ
being the size distribution of the structural units. Determina-

tion of this size distribution is the aim of research in the area of

polydisperse materials.

Equation (4) is valid if upon dilatation the contrast is

conserved. This means that the maximum and minimum

excess densities are identical in every dilated image of the

template. In a different subarea of polydispersity, one would

assume that every ‘particle’ has the same excess mass (as in the

case of monodisperse polymer chains in random coil confor-

mation which are subjected to varying dilation). In this case,

dilatation invariance of the mass is introduced by writing

~���2 rð Þ ¼
Z
R

3
þ

hH að Þ ~���2T

r

a

� � d3a

a � a ; ð5Þ

with, in Cartesian coordinates,

d3a

a � a ¼
da1

a2
1

da2

a2
2

da3

a2
3

:

From the observed correlation function, the scattering pattern

is obtained by Fourier transformation. Obviously for both

equation (4) and equation (5) the Fourier transformation will

only act on the correlation function of the template, and with

equation (2) we obtain the expected result

I sð Þ ¼
Z
R

3
þ

a2
1 a2

2 a2
3 hH að Þ IT a � sð Þ d3a ð6Þ

in Cartesian coordinates, assuming conservation of contrast.

Up to now all particles are considered to be perfectly

oriented. High but imperfect orientation is not unusual in

fibres or in injection-moulded materials. In this case, the

remnant effect of misorientation can be eliminated by appli-

cation of the Ruland streak method (Ruland, 1969, 1968;

Perret & Ruland, 1969, 1970; Thünemann & Ruland, 2000).

Isotropy of the scattering pattern or even the template

structure,

~���2 rð Þ ¼
Z1
0

hH að Þ ~���2T

r

a

� �
da; ð7Þ

results in considerable simplification. Nevertheless, even in the

anisotropic case, the problem is generally simplified for

practical reasons. If the template is not isotropic, it is most

frequently assumed to show uniaxial symmetry (lamella,

cylinder, rod). Similarly, the polydispersity is frequently

discussed in terms of a ‘length variation’ which is independent

of ‘diameter variation’. This means that for the anisotropic

case, hH að Þ ¼ hH12 a12ð Þ hH3 a3ð Þ decomposes into a product of

simple functions in cylindrical coordinates [a12 ¼ ða2
1 þ a2

2Þ1=2,

r12 ¼ ðr2
1 þ r2

2Þ1=2]. Finally, if the template structure
~���2T r=að Þ ¼ ~���2T12 r12=a12ð Þ ~���2T3 r3=a3ð Þ is suitably chosen,

~���2 r12; r3ð Þ ¼
Z1
0

hH12 a12ð Þ ~���2T12

r12

a12

� �
da12

�
Z1
0

hH3 a3ð Þ ~���2T3

r3

a3

� �
da3

is obtained. In this or a similar manner, polydispersity of

anisotropic materials can frequently be split and treated as a

set of quasi one-dimensional problems.

2.3. The chord distribution function of the polydisperse

material

The notion of a chord length distribution (Méring &

Tchoubar-Vallat, 1965, 1966, 1968; Tchoubar & Méring, 1969),

an interface distribution function (IDF) (Ruland, 1977) or a

multi-dimensional chord distribution function (CDF) (Stri-

beck, 2001), is commonly related to the special case of a two-

phase system. Nevertheless, by application of the corre-

sponding mathematical algorithms to a deliberate structure,

the concept is readily extended.

The CDF

z rð Þ ¼ � r ~�� rð Þ½ ��2 ð8Þ
¼ �� ~���2 rð Þ� � ð9Þ
¼ � F 4�2s2 I sð Þ� � ð10Þ

is generally defined by the negative autocorrelation of the

gradient of the excess electron density. As stated in the middle

equation, it also represents the negative Laplacian of the

correlation function. Finally, its close relation to the measured

scattering pattern is established (Stribeck, 2001) by the

Fourier-transform derivation theorem.

With equation (4) it follows that

z rð Þ ¼
Z
R

3
þ

hH að Þ 1

a
zT

r

a

� � d3a

a
: ð11Þ

This is a genuine Mellin convolution of the size distribution

hH að Þ and a template function whose normZ
1

a
zT

r

a

� �
d3r ¼ c ð12Þ

does not depend on the dilatation vector a. If here we choose

c ¼ 1, the meaning of a ¼ lp as the general and three-

dimensional equivalent to the common average segment

length ‘p of two-phase materials becomes obvious.

In order both to verify this supposition and to relate

equation (11) to existing theory, we consider the isotropic case
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z rð Þ ¼
Z1
0

hH að Þ 1

a
zT

r

a

� � da

a
ð13Þ

with an integral chord length distribution zT rð Þ of the

template, and introduce the ordinary reduced radial correla-

tion function � rð Þ,

�z rð Þ ¼ Q � 00 rð Þ ¼ Q

Z1
0

hH að Þ 1

a
� 00T

r

a

� � da

a
; ð14Þ

with Q ¼ ~���2 0ð Þ representing the scattering power. We map

a 7 �! ‘p and identify

� 1

‘p

� 00T
‘

‘p

 !
¼ gT ‘ð Þ ð15Þ

as the renormalized chord length distribution (Porod, 1982). It

is renormalized because
R

gT ‘ð Þ d‘ ¼ 1 is no longer a function

of ‘p. Such renormalization is generally required in order to

eliminate any dependency of the norm of the template func-

tion from the scaling vector a.

Finally

z rð Þ ¼
Z
R

3
þ

hH að Þ gT

r

a

� � d3a

a
; ð16Þ

the observed CDF, is a multi-dimensional Mellin convolution.

It combines the generalized and normalized chord distribution

gT rð Þ with the size distribution hH að Þ of the structural units.

After Fourier transformation of equation (16), we obtain

for the scattering pattern, in Cartesian coordinates,

4�2s2 I sð Þ ¼ �
Z
R

3
þ

hH að Þ a1a2a3 GT a � sð Þ da1

a1

da2

a2

da3

a3

; ð17Þ

which is no longer a Mellin convolution.

2.3.1. Discussion. It has been demonstrated that the CDF is

advantageously utilized if polydispersity is accounting for a

considerable effect. The main advantage is its plain relation to

the size distribution. A second advantage arises from the

simple mathematical relation (15) that permits computation of

segment distributions gT rð Þ for simple and more complicated

geometrical bodies which are of practical interest (spheres,

cylinders, etc.). Analytical results are reported in the literature.

Although the correlation function according to equation (7)

seems not to be far from a genuine Mellin convolution, the

same problem as with the scattering intensity becomes obvious

upon renormalization of the template function: finally, the

contributions of the largest ‘particles’ are governing not only

the scattering intensity, but also the correlation function. The

reason is the assumed conservation of the contrast amplitude

of the structural units. This overemphasis is removed by

employing the gradient operator, as it is sensing the differ-

ential of the contrast.

2.4. A general pathway for the analysis of polydisperse
structure

2.4.1. Outline. Why should it be advantageous to describe

polydispersity by Mellin convolution? The reason is the

simplicity by which each moment

�0i f � hð Þ ¼ �0i fð Þ�0i hð Þ ð18Þ

of the Mellin convoluted function f � h is expressed by the

moments of its partner functions f and h (Stribeck, 1993b).

Obviously this property indicates a straightforward strategy

for the determination of the structural parameters which are

describing the polydispersity of the sample.

Provided that we have either measured the scattering

intensity of a monodisperse sample or that the template shape

is known, we can compute first gT rð Þ, and, second its series of

moments, either by numerical integration or by analytical

mathematics, respectively. This list of numbers is set aside for

later use.

After measuring the scattering intensity of a polydisperse

sample, its CDF z rð Þ is computed (Stribeck, 2001). Then the

moments of z rð Þ are determined by numerical integration.

Equation (18) shows how the moments of the size distribution

are computed by simple arithmetic. Finally, from these

moments the structure parameters of heterogeneity are

readily assessed (Stribeck, 1999).

2.4.2. Analytical determination of the template function.

For two-phase materials, simple geometrical reasoning based

on the ‘particle-ghost construction method’ (Guinier &

Fournet, 1955, pp. 12–19; Brumberger, 1995, pp. 16–20) results

in the analytical form of the correlation function of the

representative particle. Several solutions concerning spheres,

hollow spheres, circles and cylinders can be found in the

literature (Letcher & Schmidt, 1966; Schmidt, 1967; Fedorova

& Schmidt, 1978; Jánosi, 1986), and a comprehensive collec-

tion is presented by Pedersen (2002). For a more general

material, the solution may require more involved reasoning. In

this case, equation (15) or an analogon adapted for two- or

one-dimensional isotropy is used to compute the template

function gT rð Þ.
2.4.3. Particle clusters and cumulated polydispersity. If no

correlations are observed among the individual particles from

the polydisperse ensemble, this paragraph may be skipped.

Otherwise, the correlations have to be modelled, resulting in

the mathematical description of a complex structural unit. In

this paper, such a complex structural unit is addressed as a

‘cluster’, not in the restricting sense of coagulated particles,

but in the general sense of an ensemble of correlated particles.

For poor correlation, short-range-order models may suffice,

which are generated using the principle developed by Zernike

& Prins (1927) and refined by Hermans (1944) and Hosemann

(1949). For highly ordered materials, which are of interest in

nanotechnology, appropriate models are presently constructed

by Ruland and Burger (Ruland & Smarsly, 2002, 2004, 2005;

Smarsly et al., 2005; Gelfer et al., 2004; Chen et al., 2005).

If, in a kind of cumulated polydispersity, the particle clusters

themselves are not identical but similar only, the ultimately
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observed structure is, again, described by a Mellin convolu-

tion. In this case, the partner functions are the cluster template

function and the cluster size distribution. At this point it is, in

principle, possible to carry out the Mellin convolution

numerically using a model cluster size distribution (Stribeck,

1993a,b) in order to consider the effect of heterogeneity on the

scattering data.

2.4.4. Determination of polydispersity. In order to deter-

mine heterogeneity or polydispersity, it is not necessary to

model the size distribution if the template function of the

representative structural unit is known analytically. Then the

series of moments �0i gTð Þ of gT can be computed (Stribeck,

1999). This is conveniently achieved by programming the

Mellin transformation in Mathematica (Wolfram Research,

Champaign). Thereafter, the moments �0i zð Þ of the experi-

mental CDF are numerically determined and equation (18) is

used to compute the corresponding moments of the dilation

distribution hH rð Þ and related structural parameters (for an

example, cf. Stribeck, 1999). The most simple case for the

application of this method is the polydispersity introduced by

isotropic dilatation in isotropic scattering curves.

3. Conclusion

The presented considerations demonstrate how the Mellin

convolution approach can be utilized in order analytically to

describe and to analyse polydispersity and heterogeneity in

general scattering data. This approach adds a new tool to the

toolbox of scattering theory. An analytical method based on

the Mellin convolution can easily handle particle scattering.

Moreover, even more complex cases appear to be manageable.

An example is the description and study of anisotropic scat-

tering patterns with preferred orientation and anisotropic

dilatation.

The advantage of the deduced method is that no modelling

of the size distribution (of particles or clusters, respectively) is

required. The general approach is based on the same set of

assumptions as the established Glatter method (Glatter, 1980)

for the analysis of isotropic scattering curves from poly-

disperse particle systems. If raw isotropic scattering curves can

be directly analysed, Glatter’s method is to be preferred. On

the other hand, the proposed analysis involves little extra

effort if a stepwise analysis is required because the scattering

pattern of a non-ideal two-phase system must be pre-treated in

order first to compute the scattering pattern of the ideal two-

phase system and, second, to check the CDF for correlations

among the particles. For the case of pure particle scattering,

this has been demonstrated in previous experimental work

(Stribeck, 1999). It appears worth mentioning that the directly

measured scattering images are not analysed. Instead, the

analysed CDF must be computed. This is similar to the

situation in tomography, where it is not the absorption images

that are analysed, but a three-dimensional image that has been

computed from the absorption images. Only complete low-

noise scattering patterns can be converted into a CDF.

Completeness means that reciprocal-space data must be

available for every direction, at least up to a scattering vector

smax that is in the region of un-modulated decay of Porod’s law.

Computation is carried out in several automated steps (Stri-

beck, 2001). In particular, the step of background determi-

nation by low-pass filtering of the scattering pattern is critical,

because the filter function cannot be founded on analytical

mathematics. It is only adjusted in such a way that the

resulting CDF reproduces several simple model data well

(Stribeck, 2001).

On the basis of the deduced theoretical Mellin convolution

approach, it may become possible to tackle another question

of fundamental interest, namely what is happening both to the

scattering and to the structure if the scaling distribution

becomes broader and broader. Obviously the structural units

can only coexist side-by-side in the irradiated volume as long

as the support of the scaling distribution is limited. Thus an

infinitely broad scaling-factor distribution should force the

structure to become fractal.

APPENDIX A
Mellin convolution and scattering theory

A1. Mellin convolution

A1.1. Definition. The integral equations of polydispersity,

(4) and (5), are closely related to Mellin convolution. In the

multidimensional case it is defined as (Brychkov et al., 1992;

Sneddon, 1994)

f rð Þ ¼
Z1
0

h rð Þ fT

r

x

� � dnx

x
ð19Þ

:¼ h rð Þ � fT rð Þ; ð20Þ
with x 2 Rn

þ. The Mellin convolution shall be represented by

the symbol �. Most frequently, the Mellin convolution is used

in one dimension (Titchmarsh, 1948, p. 53; Marichev, 1983;

Feigin & Svergun, 1987, p. 304):

f rð Þ ¼
Z1
0

h xð Þ fT

r

x

� � dx

x
: ð21Þ

The Mellin convolution describes the uncorrelated super-

position of similar functions derived from a template fT under

the assumption that the norm of the dilated images of fT is

conserved (Stribeck, 1993b). In measure theory, the term dx=x

is named the multiplicative Haar measure. It is invariant under

dilatation x 7 �! ax, so that d axð Þ=ax ¼ dx=x. The relation of

the Mellin convolution to the ordinary convolution is readily

established by substituting the variables by their logarithms.

A1.2. Consistency considerations. In the established scat-

tering theory, one-dimensional particle size distributions are

not modelled by the Mellin convolution, but by the ordinary

convolution (Hermans, 1944; Hosemann, 1949). If the Mellin

convolution is consistent with the established theory, a neutral

element � x� 1ð Þ for the Mellin convolution must exist with

� xð Þ being the Dirac delta distribution. This means that the

equation

h xð Þ ¼ h xð Þ � � x� 1ð Þ ð22Þ
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must hold. The validity of this equation is obvious because of

the dilatation invariance of Mellin convolution and can be

verified by Mellin transformation using the identity

M � x� að Þ½ � ¼ as�1. For materials science, this means that, e.g.

a layer thickness distribution h xð Þ can as well be thought of as

a Mellin convolution of a representative unit lamella � x� 1ð Þ
with h xð Þ.

With respect to the Fourier transformation, the Mellin

convolution is also consistent with scattering theory. The

polydispersity relation is conserved since only one of the

partner functions is affected by the Fourier transformation.

A2. Mellin transformation and moments

The function

~HH sð Þ ¼
Z1
0

xs h xð Þ dx

x
ð23Þ

:¼M h xð Þ½ � ð24Þ
is the Mellin transform of h xð Þ. The Mellin transform is the

integration using a kernel xs with respect to the multiplicative

Haar measure. Its inverse transform is defined by

h xð Þ ¼ 1

2�i

Zcþi1

c�i1

~HH sð Þ x�s ds ð25Þ

:¼M�1 ~HH sð Þ� �
: ð26Þ

Equation (23) shows that the Mellin transform is an extension

to the definition of moments (Abramowitz & Stegun, 1968, ch.

26),

�0i hð Þ ¼
Z

xi h xð Þ dx; ð27Þ

of a distribution h xð Þ. The structure parameters of a poly-

disperse structure that concern the engineer are closely

related to these moments. �00 hð Þ is the norm and

m hð Þ :¼ �01 hð Þ is the mean of the distribution on which the

definition of central moments,

�i hð Þ :¼
Z

x�m hð Þ½ �i dx; ð28Þ

is based. As a measure of distribution width, it is common to

report the variance

�2 hð Þ :¼ �2 hð Þ; ð29Þ
or the standard deviation � hð Þ. �3 hð Þ=�3 hð Þ is the skewness of

the distribution (Abramowitz & Stegun, 1968, ch. 26).
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Bayer, R. K. (2001). J. Mater. Sci. 36, 5739–5746.
Gelfer, M., Burger, C., Fadeev, A., Sics, I., Chu, B., Hsiao, B. S.,

Heintz, A., Kojo, K., Hsu, S.-L., Si, M. & Rafailovich, M. (2004).
Langmuir, 20, 3746–3758.

Glatter, O. (1980). J. Appl. Cryst. 13, 7–11.
Glatter, O. & Kratky, O. (1982). Editors. Small Angle X-ray

Scattering. London: Academic Press.
Greschner, G. S. (1973). Makromol. Chem. 168, 273–288.
Guinier, A. & Fournet, G. (1955). Small-Angle Scattering of X-rays.

London: Chapman and Hall.
Hermans, J. J. (1944). Recl. Trav. Chim. Pays-Bas, 63, 211–218.
Higgins, J. S. & Stein, R. S. (1978). J. Appl. Cryst. 11, 346–375.
Hosemann, R. (1939). Z. Physik, 113, 751–768.
Hosemann, R. (1949). Z. Phys. 127, 16–40.
Hosemann, R. (1950). Kolloid Z. 117, 13–41.
Jánosi, A. (1986). Z. Phys. B, 63, 375–381.
Keum, J. K., Burger, C., Hsiao, B. S., Somani, R., Yang, L., Chu, B.,

Kolb, R., Chen, H. & Lue, C.-T. (2005). Prog. Colloid Polym. Sci.
130, 113–125.

Kochendörfer, A. (1944). Z. Kristallogr. 105, 438–480.
Letcher, J. H. & Schmidt, P. W. (1966). J. Appl. Phys. 37, 649–

655.
Marichev, O. I. (1983). Handbook of Integral Transforms of Higher

Transcendental Functions. Chichester: Ellis Horwood.
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